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Introduction

Cardiac MRI (CMR) has become increasingly important 
for managing pediatric and adult congenital heart disease 
(ACHD). Its non-invasive nature, lack of ionizing 
radiation, and 3D anatomic coverage makes it the preferred 
secondary modality for anatomic and blood flow imaging 
of CHD patients whose diagnosis remain elusive after 
echocardiography (1-4). 

The technical challenges related to the use of CMR 
in CHD patients can be summarized as: the anatomical 
structures to be visualized are highly complex and 
individualized (1). This complexity is heightened for the 

pediatric age group due to their relatively smaller organs, 
which requires MR acquisitions with high spatial resolution 
that signifies the choice for the coil and field strength in 
pediatric MRI (5,6). For adults with CHD, previous surgical 
interventions may result in unique anatomy for each 
individual patient (2). Faster heart rates in pediatric patients 
necessitate high-speed image acquisition particularly in 
contrast-enhanced MRI (3). Patient cooperation during 
the extended scan time is needed to avoid image blurring 
and artifacts caused by physiological motion. Patients with 
advanced cardiopulmonary disease as well as children may 
have problems with long breath-holds. This is even more 
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challenging for toddlers and infants due to their higher 
cardiac and respiratory rates. Therefore, anesthesia is 
necessary in many situations (7-10).

Since complex CHD is usually associated with highly 
variable anatomical cardiac and vascular anatomic 
abnormalities, the validity of routine techniques for 
evaluating the cardiac function and deriving the heart 
chamber volumes and ejection fractions may need to 
be revisited for this group of patients. Precise chamber 
segmentation and accurate 3D reconstruction are two main 
steps toward calculation of chamber volumes. Consequently, 
devising more intelligent and CHD-specific segmentation 
and reconstruction methods is a clinical unmet need (11).

During the past few years, advancements in artificial 
intelligence (AI) have begun to translate into CMR aiming 
to overcome the existing challenges for scanning CHD 
patients and analyzing their data. AI has enabled faster 
and more robust CMR scans with improved image quality. 
These improvements can be categorized as: (I) image 
acquisition methods; (II) reconstruction techniques; and 
(III) post-processing algorithms. This review article is 
mainly focused on these three aspects and finally wraps up 
with the current clinical unmet needs and where the field is  
heading to.

AI in a nutshell

Recent advancements in computer science, more powerful 
computational platforms and the extensive availability 
of data have provided unprecedented opportunities for 
researchers to develop AI tools to better understand and 
harness complex processes. Indeed, AI has been considered 
one of the most promising tools in multiple aspects of 
medical imaging, from image acquisition and processing 
to aided reporting, follow-up planning, data storage, data 
mining, among others.

Taken as a whole, AI is a broad term referring to a field 
of computer science dedicated to the study of intelligent 
agents that mimics the cognitive functions, such as 
learning (gathering information and rules for a specific 
task), reasoning (using rules to reach conclusion) and self-
correction. More recently, AI is branching off into a wide 
variety of subfields and techniques.

Machine learning (ML) is the main ingredient of most 
of the AI systems. ML enables extraction of underlying 
patterns governing the systems of interest with the help 
of data through mathematical procedures, rather than by 
explicit programming (12).

At the present time, artificial neural networks (ANNs) 
are among the most popular regression and classification 
class of algorithms in the realm of ML.

They are inspired by the human brain’s architecture of 
neurons and synapses (Figure 1). The popularity of ANNs 
is mainly due to the flexibility of modeling any complicated 
functional structure, especially non-linear systems. 
ANNs consist of sets of interconnected nodes (neurons) 
stacked in consecutive layers. Each node simply contains 
a mathematical function that transforms its input—a set 
of values representing features—to an output and sends it 
to the next layer through a weighted edge. An activation 
node finally transforms all the node responses to single 
out through a nonlinear function (13,14). The activation 
function is the key component of neural networks, which 
differentiates neural networks from a linear classifier. The 
performance of ANNs improves as the amount of input 
data and complexity of network increases. However, due to 
intensive computational barriers, training very large ANNs 
was not practical until a decade ago.

The training process is by adjusting the weights and 
biases of each node. Modern neural networks with millions 
of parameters are trained via an optimization algorithm 
such as gradient descent (15). In each iteration, a loss 
function between predictions, computed from a given input 
(forward propagation), and the target class, is quantitatively 
evaluated. Then, all randomly initialized parameters of the 
network are updated by small increments in the direction 
that minimizes the loss, a process called back-propagation.

With considerable growth in computational power, deep 
neural network (DNN), which is basically ANN with large 
numbers of stacked hidden layers and neurons, has emerged 
(Figure 2). Since the state of layers between the first layer 
(input) and the last layer (output) does not correspond to 
observable data, they are called hidden layers (16).

Due to the ability of handling large amount of data 
with complex network structures, DNNs are of paramount 
significance in the analysis of non-numerical data structures 
such as image processing, speech recognition, and 
natural language processing (17). Among various DNNs, 
convolutional neural networks (CNNs), and recurrent 
neural networks (RNNs) are the most popular in image and 
video processing tasks.

CNNs 

CNNs consist  of special  type of layers,  so called 
convolutional layers. Each convolution operation is in 
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Figure 1 Schematic of biological and artifi cial neural networks.

Figure 2 Schematic of deep neural network.
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fact a filter function that combines the information of 
neighboring inputs using learnable parameters (kernels). 
This type of operation is particularly advantageous in 
finding local patterns such as edges, shapes, lines or other 
visual elements in images. The convolutional layer applies 
multiple filters and generates multiple feature maps. In 
addition to convolution, other types of layers such as 
pooling and fully connected layers are used on CNNs (13). 
Pooling layers are used to capture an increasingly larger 
field of view, by reducing feature maps. Propagation of only 
the maximum or average activation, through a layer of max 
or average pooling, leads to lower sensitivity to small shifts 
or distortions of the target object in extracted feature maps 
(Figure 3). 

Krizhevsky et al. (18) were among the first to explore 
much deeper convolutional networks, by proposing an 
8-layer model, so called AlexNet, which competed and 
won the ImageNet competition in 2012. The other famous 
architecture, ResNet (19), whose ResNet-blocks only learn 
the residuals that are close to the identity function, was 
introduced in 2015. Using this trick, deeper models can be 
efficiently trained. 

More recently,  scientists  have introduced fully 
convolutional neural network (FCN) (20), which is a normal 
CNN, except that the fully connected layers are converted 
to one or more convolution layers with a large “receptive 
field”. FCNs aim to capture the rough estimation of the 
locations of elements and overall context in an image. FCNs 
can efficiently be trained end-to-end and pixels-to-pixels for 
tasks like semantic segmentation.

Many widely-used FCNs are inspired by the well-
known U-net architecture (21), comprising a ‘regular’ FCN 

followed by an up-sampling part where ‘up’-convolutions 
are used to increase the image size, combined with so called 
skip-connections to directly connect opposing contracting 
and expanding convolutional layers. A schematic of these 
architectures is shown in Figure 4.

Recurrent neural networks

Standard neural networks rely on the assumption of 
independent training and test examples. In processing of 
video frames, audio, and words pulled from sentences, 
independent assumption fails (22).

RNNs allow network architectures with cycling and 
backward arcs to previous layer. This architecture is 
particularly useful for data with a time dependency between 
inputs, such as time series, and videos commonly used in 
medical imaging. Similar to CNNs, RNNs have deferent 
architecture depending on the assigned task, such as recursive, 
fully connected, and bidirectional layers (Figure 5) (23). 

Generative adversarial neural networks

Aside from discriminative neural networks, more recently, 
attention has been given to generative adversarial networks 
(GANs). GANs are made of a pair of networks, trained 
simultaneously in competition with each other. One neural 
network, called the generator, generates new data instances, 
while the other, the discriminator, evaluates them and 
decides whether the generated data belongs to the actual 
training dataset or not (Figure 6). 

Goodfellow et al. (24) introduced the exceptional ability 
of the GANs to mimic data distributions, which opens 

Figure 3 Overview of the convolutional networks.
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Figure 4 Schematic of a typical U-shaped FCN architecture. FCN, fully convolutional neural network.

Figure 5 A general model of a recurrent neural network.

the possibility to bridge the gap between learning and 
synthesis. In follow-up work, Alex Radford (25) proposed an 
extension of GANs to address the instability issue of GANs, 
by converting the fully connected networks to CNNs as 
deep convolutional GANs (DC-GANs). Both generator 
and discriminator are CNNs, and all the pooling layers 
are replaced by strided convolutions. DC-GANs use batch 
normalization and ReLU (26) activation, which makes the 
training stable in most settings. 

Due to the GANs’ excellent performance in generation 
of realistic-looking images, a number of articles track 
the recent advancements of GANs (27-29). The main 
reasons behind this success are the inherent advantage of 
being an unsupervised training method to obtain pieces 
of information over data (30), as well as the significant 
performance in the extraction of visual features by 
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the data.
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Deep learning for image acquisition

CMR involves the acquisition of cross-sectional images in 
standard views aligned with the heart axes. Thus, expert 
medical imaging technologists with detailed knowledge 
of cardiac anatomy are required to prescribe appropriate 
imaging planes with time-efficient and reproducible 
planning. To ensure that the heart is at the isocenter of the 
magnet, the technologist needs to identify the heart location 
from a few localizer images as one of the fi rst steps in CMR. 
Therefore, automated positioning and view planning are 
considered important steps towards planning for automatic 
acquisition and post processing analysis (31). Nevertheless, 
due to diverse characteristics of patients’ anatomical 
features, automatic localization of the heart still remains an 
open challenge.

Conventional methods for automatic localization are 
mainly location-based, time-based or shape-based. In the 
first group, the heart is assumed to be in the center of 
the image (32), which does not consider the variability 
of patients’ anatomy and MR slices. The assumption in 
time-based techniques is that the only moving object in 
the image is the heart (33). This assumption may lead to 
low sensitivity, considering the other moving organs such 
as lungs, and the possibility of motion artifacts. Finally, 
the shape-based methods assume a circular shape for the 
left ventricle (LV) (34,35). All these assumptions usually 
introduce error, particularly in case of patients with extreme 
variabilities in their anatomy, such as CHD patients (31).

Algorithms based on ML have been employed for organ 
detection and localization of different parts of the body in 

various imaging modalities (36-38). As one of the primary 
machine-learning based localization methods for CMR, 
Zheng et al. (39) used marginal space learning to detect the 
LV in CMR 2D long-axis view. They also detected several 
important LV landmarks, such as two annulus points on the 
mitral valve and the apex. However, their method could not 
be extended to 3D or 4D images due to exponential increase 
in dimension of the parameter space. Lu et al. (40) used 
probabilistic boosting trees and marginal space learning 
to estimate the LV position and boundaries in the mid-
ventricular short axis slice. They have used their findings 
for automated view planning for CMR acquisition. 

More recently, the challenge of cardiac localization has 
been vastly tackled, due to advances in ML algorithms 
and in particular powerful deep learning. Kabani et al. 
(41) proposed a CNN architecture that treats the problem 
as a classification task in which pixels are classified as 
background or inside the bounding box. Avendi et al. (42) 
developed the automatic LV detection using convolutional 
networks to reduce the complexity of their segmentation 
task. They took advantage of auto-encoders to pre-train 
their CNN to overcome the limited number of training 
dataset. Other researchers utilized CNN for this purpose, 
which is based on exhaustive scanning of the input image 
searching for the LV or the heart anatomical points, without 
having prior knowledge about the position, the shape or the 
object’s motion profi le (31).

The latest techniques for localization and view planning of 
CMR are applications of deep reinforcement learning (RL). 
RL is performed by interacting with an environment instead 
of using a set of labeled examples. Alansary et al. (43,44) 

Figure 6 Schematic of GANs framework. GANs, generative adversarial networks.
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proposed an RL-based approach for fully automatic view 
plane detection from 3D CMR data. Their model involves a 
complex search strategy with hierarchical action steps.

Presently, automated localization and pose detection 
of the heart from CMR can be streamlined using 
deep-learning. Since the long scan time is one of the 
shortcomings of MR imaging, particularly for pediatric and 
ACHD patients, automated view planning is the first step 
toward reduction of the scan time for CMR acquisition.

Deep learning for image reconstruction

Reducing the MRI scan time not only leads to higher 
patient satisfaction, but also helps minimizing the motion 
artifacts from patient movement. Since the MRI scan time 
is almost proportional to the number of time-consuming 
phase-encoding steps in k-space, under-sampling seems 
necessary (45). Compressed sensing MRI and Parallel MRI 
are some of the techniques that have been used to expedite 
MRI imaging while dealing with aliasing artifacts. In 
compressed sensing MRI (46,47), prior information on MR 
images of the unmeasured k-space data is used to reduce 
aliasing artifacts. Parallel MRI (48,49) uses space-dependent 
properties of the receiver coils to reduce aliasing artifacts by 
installing multiple receiver coils (50).

To achieve a fully sampled MR image corresponding to 
the under-sampled data, an optimal reconstruction function 
f:x→y is needed to map highly undersampled k-space data (x) 
to a desired image (y). Incorporating the complex MR image 
manifold into the regularization term using conventional 
regularized least-square frameworks can be challenging. 
Early attempts to use ML for the reconstruction task have 
been traditionally based on dictionary learning (51,52). 
They learn dictionary elements directly from under-
sampled data online, such that no reference data is required. 
A new optimization problem must be solved for every new 
reconstruction, which is computationally expensive and 
does not involve non-linearities.

To enhance or suppress certain filter responses and 
by learning non-linearities, deep learning has been 
recently used to reconstruct anatomic MRIs and estimate 
reconstruction function f. In these methods, the aim 
is to learn the function f:x→y using training dataset 
{(x(i),y(i)):i=1,···,N}. Thus, f is achieved via 

( )( ) ( )
2

1

1argmin
N

i i
f Net

i
f f x y

NÎ
=

= -å

Most deep learning frameworks take advantage of 

highly nonlinear compressed sensing to obtain an optimal 
reconstruction function through the manifold constraint 
learned from the training set and leveraging complex prior 
knowledge on y. For example, Hyun et al. (45) utilized U-net (21)  
to provide a low-dimensional latent representation and 
preserve high-resolution features via concatenation in the 
reconstruction process. Hammernik et al. (53) proposed an 
MRI reconstruction approach for clinical multi-coil data 
based on variational methods and deep learning. They 
formulated MRI reconstruction as a variational model and 
combined this model with a gradient descent scheme, which 
forms a variational network structure. 

A few other studies have recently discussed the 
application of deep learning for MRI reconstruction by 
leveraging patient data (54-58). These advancements in MR 
reconstruction and localization area, have led to significant 
acceleration in CMR acquisition time, as recently translated 
to practice by companies such as HeartVista, which is 
developing automated systems to reduce the scan time.

Application of deep learning in CMR post-
processing

Segmentation of cardiac chambers is an important CMR 
post-processing technique that utilizes different image 
processing methods. Technically, segmentation divides an 
image into different parts and depicts different regions 
of interest. Segmentation of cardiac images provides 
structural information that helps characterization of 
different heart chambers to facilitate diagnosis of anatomic 
and functional disorders. Furthermore, cardiac chamber 
segmentation is used to calculate different clinical indices 
such as ejection fraction, ventricular volumes and masses. 
Manual segmentation of CMR images, which is currently 
the standard clinical practice, is time consuming and prone 
to inter- and intra-observer variability (34,59-61). The 
segmentation task is more challenging in both adult and 
pediatric patients with CHD due to their unique anatomical 
features, smaller size of heart and higher motion artifacts, as 
particularly seen in pediatric patients. 

Classical approaches for automatic segmentation of the 
heart chambers can be generally classified as: region and 
edge-based methods (62-67), deformable methods (68-73),  
active appearance models  (AAM) and active shape models 
(ASM) (74-78), and atlas models (34,76,79-81). However, 
these methods have many shortcomings such as low 
robustness and accuracy, need for extensive user interaction 
and sensitivity to initialization (34). A large body of 
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literature has discussed segmentation methods for CMR 
images, as summarized by multiple review papers (34,82,83). 
The current state-of-the-art methods use supervised deep-
learning-based models to outline chambers and vessels 
in CMR data (42,84-86). Nevertheless, due to the higher 
anatomical variation and fewer available training dataset for 
CHD patients, performance of CNNs—as the most popular 
models for the segmentation tasks—is still suboptimal since 
their performance highly depends on provided training 
dataset.

To address this unmet clinical need, the medical image 
computing and computer-assisted intervention (MICCAI) 
society introduced a public competition for segmentation 
of CHD 3D MR data in 2016 (HVSMR) (87).  Yu  
et al. (88) won this competition by proposing a deeply-
supervised 3D fractal network (3D FractalNet) for whole 
heart and great vessel segmentation. They employed 
a 3D fully convolutional architecture, organized in a 
self-similar recursive fractal scheme. This architecture 
uses multi-scale features to enhance the discrimination 
power by interacting sub-paths of different convolution 
lengths. Deep supervision (89) was used to tackle the 
limited number of training data, which has been shown 
efficient for segmentation of CHD hearts. Wolterink 
et al .  (90) proposed another method based on 3D 
dilated convolutional networks. Dilated convolutional  
layers (91) aggregate features at multiple scales with 
very few parameters to avoid overfitting. Since 2016, 
several other methods have been proposed for automatic 
segmentation of CHD CMR data using CNNs (92-95). 
More recently, Pace et al. (96) and Rezaei et al. (97,98) 
employed RNNs and GANs models for whole heart 
segmentation of CHD patients.

Recent attempts to automate cardiac segmentation in 
non-CHD patients were mainly focused on LV due to 
the emerging needs for assessing the left heart function. 
However, latest attentions to the significance of other 
chambers, e.g., right ventricle (RV) and left atrium (LA) 
in progression of the structural heart disease, necessitates 
approaches for quantification of multiple heart chambers. 
To this aim, complex anatomy of RV is very challenging to 
capture. Figures 7,8 illustrate the results for automated deep 
learning-based algorithms for LV and RV segmentation in 
normal CMR images. 

The limitation of the HVSMR dataset, the only public 
dataset for CHD patients, is not only the few numbers 
of subjects, but also there is no defined differentiation 
between ventricles, and each frame is divided to blood 

pool, myocardium and background. As a result, ventricular 
volumes and clinical indices cannot be calculated. 
Considering that one of the main reasons for segmentation 
is finding the volumes and indices, there is an obvious 
clinical unmet need for a more specified and accurate 
publicly-available dataset of CHD patients. 

The above-mentioned studies have proved the potential 
of deep learning methods in CMR segmentation and the 
promising role of their applications in CHD patients. Yet, 
there are currently not many studies focused on 2D CMR 
data for CHD patients, which is most commonly practiced 
for these patients around the globe. There are only few 
groups working on segmentation of pediatric complex CHD 
MR images up to our knowledge. Figure 9 is an example of 
2D MR segmentation for a complex CHD patient. Also, 
Figure 10 illustrates a sample image of public HVSMR 
dataset and the ground-truth.

Another aspect of CMR post-processing is automatic 
analysis of myocardial tissue characterization. This subject 
has been investigated in couple of very recent studies 
(99,100). Fahmy et al. (100) initially introduced the proof-
of-concept for using deep convolutional neural networks 
(DCN) to automatically quantify LV mass and scar volume 
on CMR data with late gadolinium enhancement in patients 
with hypertrophic cardiomyopathy. More recently, they (99) 
have developed and evaluated a fully automated analysis 
platform for myocardial T1 mapping using FCNs. Their 
method automates the analysis of short-axis T1 weighted 
images to estimate the myocardium T1 values and was 
evaluated against manual T1 calculation.

AI as a diagnostic tool 

Cardiac segmentation for chamber characterization is only 
the first step in using AI as an automated diagnostic tool 
for heart disease. Detection of abnormalities and disease 
classification are the higher level aims for use of AI in 
cardiac imaging. Several studies have initially utilized ML-
based algorithms for automatic segmentation, computation 
of volumetric indices (e.g., ejection fraction) and disease 
classification (101-103). 

In 2017, the MICCAI society released a public dataset 
as “Automatic Cardiac Diagnosis Challenge” (ACDC) 
dataset for both segmentation and diagnosis challenge. 
This dataset contains CMR images from 150 subjects with 
reference measurements and classification from two medical 
experts. Subjects are evenly divided into 5 classes of normal, 
systolic heart failure, dilated cardiomyopathy, hypertrophic 
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cardiomyopathy, and abnormal RV, with well-defined 
characteristics according to physiological parameters (104). 

Using this dataset, Isensee et al. (101) extracted instants 
and dynamic features from the segmentation maps and used 
an architecture with 50 multilayer perceptron (MLP) and a 
random forest for patients’ classifi cation. Khened et al. (103) 
derived 9 features from their segmentation maps, in addition 
to the patients’ weight and height. They trained a 100-trees 
random forest classifi er using those 11 features. Wolterink 
et al. (102) extracted 12 features from the segmentation 

maps, in addition to patients’ weight and height. They used 
a fi ve-class random forest classifi er with 1000 decision trees. 
Cetin et al. (105) manually extracted the contours of the 
cardiac structures using a semi-automatic method. Then, 
they derived 567 features including physiological, shape-
based, intensity statistics, and various texture features. They 
chose the most discriminative features to prevent overfi tting 
and used support vector machine (SVM) for classifi cation. 
More recently, Snaauw et al. (106) proposed an end-to-
end multi-task learning algorithm for segmentation and 

Figure 7 Automatic (red-black) and manual (dashed green) segmentation results of LV for a typical CMR dataset of the MICCAI 2009 
database in 2D and 3D (front, base, apex views) representations. The image is modifi ed from Avendi et al. [2016]. LV, left ventricle; CMR, 
cardiac MRI; MICCAI, medical image computing and computer-assisted intervention.

Figure 8 Endocardial contours of the RV for two typical patients of the Test Set group of MICCAI 2011; from the base to the apex obtained 
by the deep learning method; Modifi ed from Avendi et al. [2017]. RV, right ventricle; MICCAI, medical image computing and computer-
assisted intervention.

Patient 1 Patient 2

2D slices of LV 3D reconstructed LV
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Figure 9 Automatic (red) and manual (green) segmentation results of LV for an example of 2D cardiac MRI from a patient with tetralogy of 
Fallot. The image is courtesy of Saeed Karimi Bidhendi from an unpublished study. LV, left ventricle.

Figure 10 A sample image from HVSMR dataset. Myocardium (green) and blood pool (red) segmentation of an example 3D cardiac MRI 
from a patient with CHD. CHD, congenital heart disease.
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classification of ACDC dataset. Although their classification 
accuracy was lower than hand-crafted methods, they 
reported competitive results.

Aside from studies mentioned above, only few studies 
have been conducted on cardiac, disease diagnosis or 
classification (107,108), and to the best of our knowledge, 
no study has yet reported on diagnosis of CHD either in 
adult or pediatric patient groups. 

AI challenges in CMR 

Despite many promising results on AI applications in 
CMR, multiple challenges are on the way of translation of 
AI algorithms and methods into clinical practice. We have 
listed some of those here.

Flow analysis

One of the needed applications of AI in CMR is analysis of 
cardiac fluid dynamics and flow measurements. Considering 
the complex features of 4D flow CMR images, a potential 
space for AI improvement is to help analysis of complex 
fluid dynamics in CHD patients using 4D flow CMR. 

Dataset

The performance of most AI algorithms highly depends on 
the quality and quantity of training data. On top of high 
costs for preparing large enough annotated CMR datasets, 
there is a considerable difference in the quality of scanned 
data (i.e., ones typically used for research and the ones used 
for clinical purposes). This heterogeneity in the quality of 
the data can be an obstacle for network’s generalization, 
and a major challenge for commercialization of AI-based 
systems (109). There are other data variabilities such as 
abnormal anatomical features, MRI machine vendors and 
protocols in different hospital. Therefore, developing 
evaluation methods to test general performance of each 
technique is a clinical unmet need. Accordingly, multi-
center and multi-vendor studies are highly recommended to 
mitigate the heterogeneity of the scanned data (16,83). 

The other data-related issue in medical imaging is class 
imbalance, which is particularly important in CHD. In most 
of the currently-available datasets, the majority of images 
are from normal subjects with very few abnormal cases. 
This can lead to lower accuracy of AI methods for real-life 
applications. Thus, development of AI platforms that can 
handle this class imbalance is of significant importance (110).

Data privacy

The patients’ privacy and data security are the top priority 
requirement when dealing with medical data. It is much 
more complicated and difficult to share the medical data as 
compared to natural images. In the US, Health Insurance 
Portability and Accountability Act (HIPAA) provides legal 
rights to patients regarding their personally-identifiable 
information and establish obligations for healthcare 
providers to protect and restrict their use with disclosure. 
Thus, all communications need to be secured, and all data 
should first be encrypted per HIPAA rules to remove any 
identifier. These privacy challenges are factors that can lead 
to trust and legal issues towards translation of AI models 
into clinical practice and may even negatively impact it.

IP and legal issues

Like any novel  technology,  there could be legal 
ramifications regarding the use of clinical imaging data for 
the commercial development of AI-based systems, since the 
owner of the data is not well specified. As well, there could 
be ambiguity in terms of intellectual property among data 
owners, including patients, data collectors, and algorithm 
developers. New regulations regarding data ownership and 
algorithms need to be developed to help development of 
these AI-based technologies. 

Liability

Implementation of AI in diagnostic procedures raises 
the legal liability and ethical issues independent from 
supervision of an imaging physician. Errors that affect the 
diagnosis may have serious ramifications for the patients. 
Who or what should take the responsibility in case of an AI-
generated mistake that harm a patient? 

These questions have always been posed and resolved in 
the history of technology development. Considering vast 
applications of AI in human life, these concerns need to be 
further studied and resolved in the coming years (111). 

Conclusions 

CMR allows for accurate analysis of cardiac functions. In 
this paper, we have reviewed the state-of-the-art AI-based 
methods which successfully improve every steps of CMR 
analysis. These methods proved their power in analysis of 
normal or non-CHD subjects by being applied on multiple 
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publicly available datasets. However, only one public 
dataset is currently available for CHD patients, which has 
substantial limitations. Considering the significance of early 
diagnosis and disease management for CHD patients and 
at the same time the complexity and challenges of CMR for 
this group of patients, the role of AI is needed to be more 
significantly investigated.

Acknowledgments

The authors would also like to acknowledge Saeed Karimi 
Bidhendi for providing the images in 9th illustration. from 
his work-in-progress study on automatic segmentation 
of tetralogy of Fallot. This work was supported by an 
experienced researcher award from the Alexander von 
Humboldt Foundation to Prof. Kheradvar.

Footnote

Conflicts of Interest: The authors have no conflicts of interest 
to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.

References

1.	 Lawley CM, Broadhouse KM, Callaghan FM, et al. 
4D flow magnetic resonance imaging: role in pediatric 
congenital heart disease. Asian Cardiovasc Thorac Ann 
2018;26:28-37.

2.	 Prakash A, Powell AJ, Geva T. Multimodality Noninvasive 
Imaging for Assessment of Congenital Heart Disease. Circ 
Cardiovasc Imaging 2010;3:112-25.

3.	 Gershlick A, de Belder M, Chambers J, et al. Role of non-
invasive imaging in the management of coronary artery 
disease: an assessment of likely change over the next 10 
years. A report from the British Cardiovascular Society 
Working Group. Heart 2007;93:423-31.

4.	 Partington SL, Valente AM. Cardiac magnetic resonance 
in adults with congenital heart disease. Methodist Debakey 
Cardiovasc J 2013;9:156-62.

5.	 Ravi A. Efficacy of a Multi-Channel Array Coil for 
Pediatric Cardiac Magnetic Resonance Imaging. The 
Graduate Faculty of The University of Akron. 2008.

6.	 Vasanawala SS, Lustig M. Advances in Pediatric Body 

MRI. Pediatr Radiol 2011;41:549-54.
7.	 Driessen MM, Breur JM, Budde RP, et al. Advances in 

cardiac magnetic resonance imaging of congenital heart 
disease. Pediatr Radiol 2015;45:5-19.

8.	 Ciet P, Tiddens HA, Wielopolski PA, et al. Magnetic 
resonance imaging in children: common problems and 
possible solutions for lung and airways imaging. Pediatr 
Radiol 2015;45:1901-15.

9.	 Greil G, Tandon AA, Silva Vieira M, et al. 3D Whole 
Heart Imaging for Congenital Heart Disease. Front 
Pediatr 2017;5:36.

10.	 Chan FP, Hanneman K. Computed tomography and 
magnetic resonance imaging in neonates with congenital 
cardiovascular disease. Semin Ultrasound CT MR 
2015;36:146-60.

11.	 Niwa K, Uchishiba M, Aotsuka H, et al. Measurement of 
ventricular volumes by cine magnetic resonance imaging 
in complex congenital heart disease with morphologically 
abnormal ventricles. Am Heart J 1996;131:567-75.

12.	 Erickson BJ, Korfiatis P, Akkus Z, et al. Machine Learning 
for Medical Imaging. RadioGraphics 2017;37:505-15.

13.	 Al'Aref SJ, Anchouche K, Singh G, et al. Clinical 
applications of machine learning in cardiovascular 
disease and its relevance to cardiac imaging. Eur Heart J 
2019;40:1975-86.

14.	 Haykin S. Neural Networks: A Comprehensive 
Foundation. New York: Prentice hall, 1994.

15.	 Barzilai J, Borwein JM. Two-Point Step Size Gradient 
Methods. IMA J NUMER ANAL 1988;8:141-8.

16.	 Lee JG, Jun S, Cho YW, et al. Deep learning in medical 
imaging: general overview. Korean J Radiol 2017;18:570-84.

17.	 Srivastava S, Soman S, Rai A, et al. Deep learning for 
health informatics: Recent trends and future directions. 
In: 2017 International Conference on Advances in 
Computing, Communications and Informatics (ICACCI). 
IEEE, 2017:1665-70.

18.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet 
classification with deep convolutional neural networks. In: 
Advances in Neural Information Processing Systems 25 
(NIPS 2012) 2012:1097-105.

19.	 He K, Zhang X, Ren S, et al. Deep residual learning 
for image recognition. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition. 
IEEE, 2016:770-8.

20.	 Long J, Shelhamer E, Darrell T. Fully convolutional 
networks for semantic segmentation. Proceedings of 
the IEEE Conference on Computer Vision and Pattern 
Recognition. IEEE, 2015:3431-40.



S322 Arafati et al. AI in pediatric and adult congenital CMR

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2019;9(Suppl 2):S310-S325 | http://dx.doi.org/10.21037/cdt.2019.06.09

21.	 Ronneberger O, Fischer P, Brox T. U-net: Convolutional 
networks for biomedical image segmentation. In: Navab 
N, Hornegger J, Wells W, et al. editors. Medical Image 
Computing and Computer-Assisted Intervention – 
MICCAI 2015. Springer, 2015:234-41. 

22.	 Lipton ZC, Berkowitz J, Elkan C. A critical review of 
recurrent neural networks for sequence learning. 2015. 
arXiv:1506.00019.

23.	 Schuster M, Paliwal KK. Bidirectional recurrent neural 
networks. IEEE Trans Signal Process 1997;45:2673-81.

24.	 Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative 
adversarial nets. In: Advances in Neural Information 
Processing Systems 27 (NIPS 2014). 2014:2672-80. 

25.	 Radford A, Metz L, Chintala S. Unsupervised 
representation learning with deep convolutional generative 
adversari.al networks. 2015. arXiv:1511.06434. 

26.	 Rectifier (neural networks). Wikipedia. 2019. Available 
online: https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)

27.	 Kazeminia S, Baur C, Kuijper A, et al. GANs for Med 
Image Anal. 2018. arXiv:1809.06222.

28.	 Creswell A, White T, Dumoulin V, et al. Generative 
adversarial networks: An overview. IEEE Signal Process 
Mag 2018;35:53-65.

29.	 Hong Y, Hwang U, Yoo J, et al. How Generative 
Adversarial Nets and its variants Work: An Overview. 
2017. arXiv:1711.05914.

30.	 Isola P, Zhu JY, Zhou T, et al. Image-to-image translation 
with conditional adversarial networks. arXiv:1611.07004.

31.	 Emad O, Yassine IA, Fahmy AS. Automatic localization 
of the left ventricle in cardiac MRI images using deep 
learning. In: 2015 37th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society 
(EMBC). IEEE, 2015:683-6.

32.	 O'Brien SP, Ghita O, Whelan PF. A Novel Model-Based 
3D+Time Left Ventricular Segmentation Technique. 
IEEE Trans Med Imaging 2011;30:461-74.

33.	 Hoffmann R, Bertelshofer F, Siegl C, et al. Automated 
Heart Localization in Cardiac Cine MR Data. In: 
Tolxdorff T, Deserno TM, Handels H, et al. editors. 
Bildverarbeitung für die Medizin 2016. Berlin: Springer 
Vieweg, 2016:116-21.

34.	 Petitjean C, Dacher JN. A review of segmentation 
methods in short axis cardiac MR images. Med Image Anal 
2011;15:169-84.

35.	 Zhong L, Zhang JM, Zhao X, et al. Automatic 
Localization of the Left Ventricle from Cardiac Cine 
Magnetic Resonance Imaging: A New Spectrum-Based 

Computer-Aided Tool. PLoS One 2014;9:e92382.
36.	 Seifert S, Barbu A, Zhou SK, et al. Hierarchical Parsing 

and Semantic Navigation of Full Body CT Data. In: Pluim 
JPW, Dawant BM. editors. Proceedings of SPIE 7259, 
Medical Imaging 2009: Image Processing. 2009:725902.

37.	 Zheng Y, Georgescu B, Ling H, et al. Constrained 
marginal space learning for efficient 3D anatomical 
structure detection in medical images. In: 2009 IEEE 
Conference on Computer Vision and Pattern Recognition. 
IEEE, 2009:194-201.

38.	 Criminisi A, Shotton J, Robertson D, et al. Regression 
forests for efficient anatomy detection and localization in 
CT studies. In: Menze B, Langs G, Tu Z, et al. editors. 
International MICCAI Workshop on Medical Computer 
Vision. Medical Computer Vision. Recognition Techniques 
and Applications in Medical Imaging. Berlin: Springer, 
2010:106-17.

39.	 Zheng Y, Lu X, Georgescu B, et al., editors. Robust object 
detection using marginal space learning and ranking-based 
multi-detector aggregation: Application to left ventricle 
detection in 2D MRI images. 2009 IEEE Conference on 
Computer Vision and Pattern Recognition. 2009. Available 
online: https://ieeexplore.ieee.org/document/5206808

40.	 Lu X, Jolly MP, Georgescu B, et al. Automatic View 
Planning for Cardiac MRI Acquisition. In: Fichtinger G, 
Martel A, Peters T. editors. Medical Image Computing 
and Computer-Assisted Intervention – MICCAI 2011. 
Springer, 2011:479-86.

41.	 Kabani A, El-Sakka MR. Object Detection and 
Localization Using Deep Convolutional Networks 
with Softmax Activation and Multi-class Log Loss. 
In: Campilho A, Karray F. editors. Image Analysis 
and Recognition. Springer International Publishing, 
2016:358-66.

42.	 Avendi MR, Kheradvar A, Jafarkhani H. A combined 
deep-learning and deformable-model approach to fully 
automatic segmentation of the left ventricle in cardiac 
MRI. Med Image Anal 2016;30:108-19.

43.	 Alansary A, Folgoc LL, Vaillant G, et al. Automatic View 
Planning with Multi-scale Deep Reinforcement Learning 
Agents. 2018. arXiv:180603228.

44.	 Alansary A, Oktay O, Li Y, et al. Evaluating reinforcement 
learning agents for anatomical landmark detection. Med 
Image Anal 2019;53:156-64.

45.	 Hyun CM, Kim HP, Lee SM, et al. Deep learning for 
undersampled MRI reconstruction. Phys Med Biol 
2018;63:135007. 

46.	 Lustig M, Donoho DL, Santos JM, et al. Compressed 



S323Cardiovascular Diagnosis and Therapy, Vol 9, Suppl 2 October 2019

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2019;9(Suppl 2):S310-S325 | http://dx.doi.org/10.21037/cdt.2019.06.09

sensing MRI. IEEE Signal Process Mag 2008;25:72-82.
47.	 Donoho DL. Compressed sensing. IEEE Trans Inf 

Theory 2006;52:1289-306.
48.	 Griswold MA, Jakob PM, Heidemann RM, et al. 

Generalized autocalibrating partially parallel acquisitions 
(GRAPPA). Magn Reson Med 2002;47:1202-10.

49.	 Pruessmann KP, Weiger M, Scheidegger MB, et al. 
SENSE: sensitivity encoding for fast MRI. Magn Reson 
Med 1999;42:952-62.

50.	 Lee D, Yoo J, Ye JC. Deep artifact learning for compressed 
sensing and parallel MRI. 2017. arXiv:1703.01120.

51.	 Caballero J, Price AN, Rueckert D, et al. Dictionary 
learning and time sparsity for dynamic MR data 
reconstruction. IEEE Trans Med Imaging 2014;33:979-94.

52.	 Ravishankar S, Bresler Y. MR image reconstruction from 
highly undersampled k-space data by dictionary learning. 
IEEE Trans Med Imaging 2011;30:1028.

53.	 Hammernik K, Klatzer T, Kobler E, et al. Learning a 
variational network for reconstruction of accelerated MRI 
data. Magn Reson Med 2018;79:3055-71.

54.	 Lee D, Yoo J, Ye JC, Deep residual learning for 
compressed sensing MRI. In: 2017 IEEE 14th 
International Symposium on Biomedical Imaging (ISBI 
2017). IEEE, 2017:15-8.

55.	 Majumdar A. Real-time dynamic mri reconstruction using 
stacked denoising autoencoder. 2015. arXiv:1503.06383.

56.	 Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction 
by domain-transform manifold learning. Nature 
2018;555:487.

57.	 Wang G, Ye JC, Mueller K, et al. Image reconstruction 
is a new frontier of machine learning. IEEE Trans Med 
Imaging 2018;37:1289-96.

58.	 Mardani M, Gong E, Cheng JY, et al. Deep Generative 
Adversarial Neural Networks for Compressive Sensing 
MRI. IEEE Trans Med Imaging 2019;38:167-79.

59.	 Tavakoli V, Amini AA. A survey of shaped-based 
registration and segmentation techniques for cardiac 
images. Comput Vis Image Underst 2013;117:966-89.

60.	 Heimann T, Meinzer HP. Statistical shape models for 3D 
medical image segmentation: a review. Med Image Anal 
2009;13:543-63.

61.	 Suinesiaputra A, Cowan BR, Al-Agamy AO, et al. A 
collaborative resource to build consensus for automated 
left ventricular segmentation of cardiac MR images. Med 
Image Anal 2014;18:50-62.

62.	 Jolly MP, Xue H, Grady L, et al. Combining registration 
and minimum surfaces for the segmentation of the left 
ventricle in cardiac cine MR images. Med Image Comput 

Comput Assist Interv 2009;12:910-8.
63.	 Jolly M. Fully automatic left ventricle segmentation in 

cardiac cine MR images using registration and minimum 
surfaces. The MIDAS Journal-Cardiac MR Left Ventricle 
Segmentation Challenge. Available online: http://hdl.
handle.net/10380/3114

64.	 Lee H-Y, Codella N, Cham M, et al. Left ventricle 
segmentation using graph searching on intensity and 
gradient and a priori knowledge (lvGIGA) for short-
axis cardiac magnetic resonance imaging. J Magn Reson 
Imaging 2008;28:1393-401.

65.	 Lin X, Cowan BR, Young AA. Automated detection of left 
ventricle in 4D MR images: experience from a large study. 
Med Image Comput Comput Assist Interv 2006;9:728-35.

66.	 Uzümcü M, van der Geest RJ, Swingen C, et al. Time 
continuous tracking and segmentation of cardiovascular 
magnetic resonance images using multidimensional 
dynamic programming. Invest Radiol 2006;41:52-62.

67.	 Codella NC, Weinsaft JW, Cham MD, et al. Left 
Ventricle: Automated Segmentation by Using 
Myocardial Effusion Threshold Reduction and 
Intravoxel Computation at MR Imaging 1. Radiology 
2008;248:1004-12.

68.	 Queirós S, Barbosa D, Heyde B, et al. Fast automatic 
myocardial segmentation in 4D cine CMR datasets. Med 
Image Anal 2014;18:1115-31.

69.	 Paragios N. A level set approach for shape-driven 
segmentation and tracking of the left ventricle. IEEE 
Trans Med Imaging 2003;22:773-6.

70.	 Pluempitiwiriyawej C, Moura JMF, Wu YJL, et al. 
STACS: new active contour scheme for cardiac MR image 
segmentation. IEEE Trans Med Imaging 2005;24:593-603.

71.	 Li C, Xu C, Gui C, et al. Distance regularized level set 
evolution and its application to image segmentation. IEEE 
Trans Image Process 2010;19:3243-54.

72.	 Barbosa D, Dietenbeck T, Schaerer J, et al. B-Spline 
Explicit Active Surfaces: An Efficient Framework for Real-
Time 3-D Region-Based Segmentation. IEEE Trans 
Image Process 2012;21:241-51.

73.	 Lee HY, Codella NC, Cham MD, et al. Automatic Left 
Ventricle Segmentation Using Iterative Thresholding and 
an Active Contour Model With Adaptation on Short-Axis 
Cardiac MRI. IEEE Trans Biomed Eng 2010;57:905-13.

74.	 Suinesiaputra A, Frangi AF, Kaandorp T, et al. Automated 
Detection of Regional Wall Motion Abnormalities Based 
on a Statistical Model Applied to Multislice Short-
Axis Cardiac MR Images. IEEE Trans Med Imaging 
2009;28:595-607.



S324 Arafati et al. AI in pediatric and adult congenital CMR

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2019;9(Suppl 2):S310-S325 | http://dx.doi.org/10.21037/cdt.2019.06.09

75.	 Koikkalainen J, Tolli T, Lauerma K, et al. Methods of 
Artificial Enlargement of the Training Set for Statistical 
Shape Models. IEEE Trans Med Imaging 2008;27:1643-54.

76.	 Zhang H, Wahle A, Johnson RK, et al. 4-D cardiac MR 
image analysis: left and right ventricular morphology and 
function. IEEE Trans Med Imaging 2010;29:350-64.

77.	 Van Assen HC, Danilouchkine MG, Frangi AF, et al. 
SPASM: a 3D-ASM for segmentation of sparse and 
arbitrarily oriented cardiac MRI data. Med Image Anal 
2006;10:286-303.

78.	 Mansi T, Voigt I, Leonardi B, et al. A statistical model 
for quantification and prediction of cardiac remodelling: 
Application to tetralogy of fallot. IEEE Trans Med 
Imaging 2011;30:1605-16.

79.	 Zhuang X, Rhode K, Arridge S, et al. An atlas-based 
segmentation propagation framework locally affine 
registration--application to automatic whole heart 
segmentation. Med Image Comput Comput Assist Interv 
2008;11:425-33.

80.	 Isgum I, Staring M, Rutten A, et al. Multi-Atlas-Based 
Segmentation With Local Decision Fusion -- Application 
to Cardiac and Aortic Segmentation in CT Scans. IEEE 
Trans Med Imaging 2009;28:1000-10.

81.	 Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, 
et al. Segmentation of 4D cardiac MR images using a 
probabilistic atlas and the EM algorithm. Med Image Anal 
2004;8:255-65.

82.	 Peng P, Lekadir K, Gooya A, et al. A review of heart 
chamber segmentation for structural and functional 
analysis using cardiac magnetic resonance imaging. 
MAGMA 2016;29:155-95.

83.	 Lundervold AS, Lundervold A. An overview of deep 
learning in medical imaging focusing on MRI. Z Med Phys 
2019;29:102-27.

84.	 Avendi MR, Kheradvar A, Jafarkhani H. Automatic 
segmentation of the right ventricle from cardiac MRI 
using a learning-based approach. Magn Reson Med 
2017;78:2439-48.

85.	 Wang C, Smedby Ö. Automatic Whole Heart 
Segmentation Using Deep Learning and Shape 
Context. In: Mansi T, McLeod K, Pop M, et al. editors. 
International Workshop on Statistical Atlases and 
Computational Models of the Heart. STACOM 2017: 
Statistical Atlases and Computational Models of the Heart. 
ACDC and MMWHS Challenges. Springer, 2017:242-9.

86.	 Payer C, Štern D, Bischof H, et al. Multi-label whole 
heart segmentation using CNNs and anatomical 
label configurations. In: Young A, Bernard O. editors. 

STACOM 2017: Statistical Atlases and Computational 
Models of the Heart. ACDC and MMWHS Challenges. 
Springer, 2017:190-8.

87.	 Pace DF, Dalca AV, Geva T, et al. Interactive Whole-
Heart Segmentation in Congenital Heart Disease. Med 
Image Comput Comput Assist Interv 2015;9351:80-8.

88.	 Yu L, Yang X, Qin J, et al. 3D FractalNet: Dense 
Volumetric Segmentation for Cardiovascular MRI 
Volumes. In: Zuluaga MA, Bhatia K, Kainz B, et al. 
editors. Reconstruction, Segmentation, and Analysis 
of Medical Images. Cham: Springer International 
Publishing, 2017.

89.	 Dou Q, Chen H, Jin Y, et al. 3D deeply supervised 
network for automatic liver segmentation from CT 
volumes. 2016. arXiv:1607.00582.

90.	 Wolterink JM, Leiner T, Viergever MA, et al. Dilated 
Convolutional Neural Networks for Cardiovascular 
MR Segmentation in Congenital Heart Disease. 2017. 
arXiv:1704.03669.

91.	 Yu F, Koltun V. Multi-scale context aggregation by dilated 
convolutions. 2015. arXiv:1511.07122.

92.	 Li J, Zhang R, Shi L, et al. Automatic Whole-Heart 
Segmentation in Congenital Heart Disease Using Deeply-
Supervised 3D FCN. In: Zuluaga MA, Bhatia K, Kainz B, 
et al. editors. Reconstruction, Segmentation, and Analysis 
of Medical Images. Springer, 2017:111-8. 

93.	 Mukhopadhyay A. Total Variation Random Forest: Fully 
Automatic MRI Segmentation in Congenital Heart 
Diseases. In: Zuluaga MA, Bhatia K, Kainz B, et al. editors. 
Reconstruction, Segmentation, and Analysis of Medical 
Images. Springer, 2017:165-71.

94.	 Tziritas G. Fully-Automatic Segmentation of Cardiac 
Images Using 3-D MRF Model Optimization and 
Substructures Tracking. In: Zuluaga MA, Bhatia K, Kainz 
B, et al. editors. Reconstruction, Segmentation, and 
Analysis of Medical Images. Springer, 2017:126-36.

95.	 Yu L, Cheng J-Z, Dou Q, et al. editors. Automatic 
3D Cardiovascular MR Segmentation with Densely-
Connected Volumetric ConvNets. In: Descoteaux M, 
Maier-Hein L, Franz A, et al. editors. Medical Image 
Computing and Computer-Assisted Intervention − 
MICCAI 2017. Cham: Springer International Publishing, 
2017:287-95.

96.	 Pace DF, Dalca AV, Brosch T, et al. Iterative Segmentation 
from Limited Training Data: Applications to Congenital 
Heart Disease. 2018. arXiv:1708.00573.

97.	 Rezaei M, Yang H, Meinel C. Recurrent generative 
adversarial network for learning imbalanced medical image 



S325Cardiovascular Diagnosis and Therapy, Vol 9, Suppl 2 October 2019

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2019;9(Suppl 2):S310-S325 | http://dx.doi.org/10.21037/cdt.2019.06.09

semantic segmentation. Multimed Tools Appl 2019. doi: 
10.1007/s11042-019-7305-1.

98.	 Rezaei M, Yang H, Meinel C. Whole Heart and Great 
Vessel Segmentation with Context-aware of Generative 
Adversarial Networks. In: Maier A, Deserno TM, Handels 
H, et al. editors. Bildverarbeitung für die Medizin 2018. 
Berlin: Springer, 2018:353-8. 

99.	 Fahmy AS, El-Rewaidy H, Nezafat M, et al. Automated 
analysis of cardiovascular magnetic resonance myocardial 
native T 1 mapping images using fully convolutional 
neural networks. J Cardiovasc Magn Reson 2019;21:7.

100.	Fahmy AS, Rausch J, Neisius U, et al. Automated cardiac 
MR scar quantification in hypertrophic cardiomyopathy 
using deep convolutional neural networks. JACC 
Cardiovasc Imaging 2018;11:1917-8.

101.	Isensee F, Jaeger PF, Full PM, et al. Automatic Cardiac 
Disease Assessment on cine-MRI via Time-Series 
Segmentation and Domain Specific Features. In: In: Pop 
M, Sermesant M, Jodoin PM, et al. editors. Statistical 
Atlases and Computational Models of the Heart. ACDC 
and MMWHS Challenges. Cham: Springer International 
Publishing, 2017:120-9.

102.	Wolterink JM, Leiner T, Viergever MA, et al. Automatic 
segmentation and disease classification using cardiac cine 
MR images. In: Pop M, Sermesant M, Jodoin PM, et al. 
editors. Statistical Atlases and Computational Models of 
the Heart. ACDC and MMWHS Challenges. Springer, 
2017:101-10.

103.	Khened M, Alex V, Krishnamurthi G. Densely connected 
fully convolutional network for short-axis cardiac cine mr 
image segmentation and heart diagnosis using random 
forest. In: Pop M, Sermesant M, Jodoin PM, et al. editors. 
Statistical Atlases and Computational Models of the Heart. 
ACDC and MMWHS Challenges. Springer, 2017:140-50.

104.	Bernard O, Lalande A, Zotti C, et al. Deep Learning 

Techniques for Automatic MRI Cardiac Multi-Structures 
Segmentation and Diagnosis: Is the Problem Solved? 
IEEE Trans Med Imaging 2018;37:2514-25.

105.	Cetin I, Sanroma G, Petersen SE, et al. A radiomics 
approach to computer-aided diagnosis with cardiac cine-
MRI. In: Pop M, Sermesant M, Jodoin PM, et al. editors. 
Statistical Atlases and Computational Models of the Heart. 
ACDC and MMWHS Challenges. Springer, 2017:82-90.

106.	Snaauw G, Gong D, Maicas G, et al. End-to-End 
Diagnosis and Segmentation Learning from Cardiac 
Magnetic Resonance Imaging. 2018. arXiv:1810.10117. 

107.	Chang Y, Song B, Jung C, et al., editors. Automatic 
Segmentation and Cardiopathy Classification in Cardiac 
Mri Images Based on Deep Neural Networks. 2016 Fourth 
International Conference on Parallel, Distributed and 
Grid Computing (PDGC). 2016. Available online: https://
ieeexplore.ieee.org/abstract/document/8461261

108.	Sharma L, Gupta G, Jaiswal V, editors. Classification and 
development of tool for heart diseases (MRI images) using 
machine learning. 2016 Fourth International Conference 
on Parallel, Distributed and Grid Computing (PDGC). 
2016. Available online: https://ieeexplore.ieee.org/
document/7913149

109.	Zech JR, Badgeley MA, Liu M, et al. Variable 
generalization performance of a deep learning model to 
detect pneumonia in chest radiographs: A cross-sectional 
study. PLoS Med 2018;15:e1002683.

110.	Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep 
learning in medical image analysis. Med Image Anal 
2017;42:60-88.

111.	Razzak MI, Naz S, Zaib A. Deep learning for medical 
image processing: Overview, challenges and the future. 
In: Dey N, Ashour AS, Borra S. Classification in BioApps. 
Springer, 2018:323-50.

Cite this article as: Arafati A, Hu P, Finn JP, Rickers C, 
Cheng AL, Jafarkhani H, Kheradvar A. Artificial intelligence in 
pediatric and adult congenital cardiac MRI: an unmet clinical 
need. Cardiovasc Diagn Ther 2019;9(Suppl 2):S310-S325. doi: 
10.21037/cdt.2019.06.09


