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Why we need artificial intelligence (AI) in 
cardiovascular medicine

Healthcare systems around the world are facing a plethora 
of new pressures; most notably, an increase in chronic 
and more complex diseases such as cardiovascular disease 
(CVD), the leading cause of mortality globally (1). As 
healthcare shifts away from population-based care to more 
patient-centered approaches, there is also a concomitant 
shift in the management of disease processes. One aspect 

is a greater emphasis on precision medicine: an emerging 
healthcare model that factors in individual variability in 
genes, environment and lifestyles, of particular relevance in 
CVD (2,3).

This is  important given the current cl imate in 
cardiovascular medicine where we generate enormous 
amounts of heterogenous data, including ‘omics’ data 
(genomics, proteomics etc.), high resolution medical 
imaging data, biosensors, wearables, continuous physiologic 
metrics and electronic health records (EHR) (4) (Figure 1).  
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This ‘big data’ holds immense potential for the use of 
sophisticated analysis by AI and machine learning (ML) 
in three aspects of cardiovascular medicine (5). Firstly, for 
clinicians it holds promise for more accurate, streamlined 
and standardised image interpretation, improved diagnosis, 
risk prediction and better guidance on best treatment 
options for different stages of disease processes. Secondly, 
for health systems AI has potential for improved workflow, 
reduction in medical errors and better patient outcomes. 
Thirdly, for patients who increasingly process more of their 
own data, an opportunity to further educate and promote 

primary and secondary cardiovascular health prevention 
(6,7).

Understanding AI

Despite its widespread use, AI remains a broadly defined 
term in the literature. AI can be categorised into narrow 
and general AI. While we are still far from attaining general 
AI, which is the ability for machines to be self-sufficient and 
have cognitive function on par with human ability, narrow 
AI is being increasingly employed in various industries 
with increased uptake in healthcare, pharmaceuticals and 
biotechnology (8). Notable examples include using this 
technology in identifying new drugs and repurposing 
existing medications (9). Narrow AI can perform specific, 
applied tasks, and includes techniques such as ML to enable 
pattern recognition, generate automated predictions and 
interpret imaging data (10) (Figure 2). 

ML

ML is part of applied AI, which is able to discover patterns 
within data by linking inputs to outputs, learning from the 
data using a learning model (11). It encompasses most AI 
applications within medicine. ML can be categorised into 
unsupervised, supervised and reinforcement learning (8). 
Supervised learning involves using labelled data to generate 
outcomes using new data (predictive); unsupervised learning 
involves using unstructured data to generate relationships 
between variables using deep learning (DL) (12). 
Reinforcement learning focuses on reward-based learning 
with positive and negative feedback and decision making 
based on prior experiences (7) (Table 1).

DL

DL is a sub-category of unsupervised learning where 
data is inputted into multilayer neural networks that yield 
final outputs (12). Neural networks can detect non-linear 
relationships between the input variables and outcomes 
using hidden layer combinations of functions. While in 
ML, an algorithm must be programmed before analysing 
data, DL can analyse datasets without prior human 
programming. Because DL is an extension of these neural 
networks, it enables greater abstraction and prediction 
with the discovery of more complex relationships between 
variables (13,14). Neural networks are often evaluated 
through receiver operating characteristic (ROC) curves 
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Figure 1 Schematic overview demonstrating the information flow 
and inter-links between various data sources.

Figure 2 Schematic representation of the relationships between 
general AI, narrow AI, ML and DL.
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Figure 3 Schematic outlining the steps involved in generating risk prediction and probability scores with a deep convolutional neural 
network with (N) hidden layers.
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Table 1 Descriptions and classifications of important ML models used in cardiovascular imaging studies 

ML model Description Type of learning

SVM: support vector 
machine

Used for classification and regression purposes, it involves finding a hyperplane that 
best divides a dataset into different classes. A commonly used model in differentiating 
between different cardiac pathologies in echocardiography (4,13,14).

Supervised

RF: random forests Consists of a large number of individual decision trees that operate ensemble (4,13,14). Supervised

KL: kernel learning Method of using linear classifiers to solve non-linear problems. Commonly used when 
combining cardiovascular data from different sources (4).

Unsupervised

CNN: convolutional neural 
network

Neural networks used to classify images, cluster images by similarity and perform 
object recognition. Consists of input and output layers separated by deep  
hidden layers (Figure 3).

Unsupervised or 
supervised

(a plot of true positives rates against false positive rates) 
where the Area Under the Curve (AUC) is used to express 
accuracy (Table 1).

Applying AI to cardiovascular medicine 

Of the many different aspects of AI in cardiovascular 
medicine, its application in non-imaging and imaging 
modalities routinely used to investigate disease holds 
the greatest potential (4). AI attempts to address issues 
relating to timing, efficiency, missed diagnosis and poor 
workflow (5). It offers the potential for earlier detection of 
disease, improved diagnostic accuracy and more accurate 
prediction of prognosis and disease severity to better 
guide optimal management (2). The democratisation of 
AI into every day wearable technology is further adding 
a new wave of lower cost, more accurate and easily 
accessible screening tools (15,16). Moreover, patterns 
and relationships previously not appreciated without ML 

could offer new insight into known disease processes and 
uncover new treatment therapies. The application of AI 
to imaging and non-imaging modalities in cardiovascular 
medicine are explored. 

Electrocardiography

The electrocardiogram (ECG) has proved a valuable data 
source for ML studies, with algorithms dating back to the 
1960s (15). By applying various ML tools, we are beginning 
to gather new insights into structural heart disease, rhythm 
disturbances, phenotypic demographics and electrolyte 
disturbances from low-cost, routine ECGs (Table 2). Attia  
et al. used 12 lead ECG data from 44,959 patients to develop 
a convolutional neural network (CNN) to detect patients 
with ventricular dysfunction; the algorithm was tested on 
52,870 patients and the results were promising, achieving 
an area under the curve (AUC) of 0.93 (17). However, the 
limitations of the study include the low positive predictive 
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Table 2 Selected applications of ML algorithms applied to the ECG

Application ML model
Training 
dataset 

(patients)

Testing 
dataset 

(patients)
AUC

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

Publication  
(Ref. #)

Screening hyperkalemia from a 
2-lead ECG in patients with CKD

CNN 449,380 61,965 0.88 90.2 63.2 – Galloway  
et al. (16)

Detecting asymptomatic LV 
dysfunction from a 12-lead ECG

CNN 44,959 52,870 0.93 86.3 85.7 85.7 Attia  
et al. (17)

Predicting AF in asymptomatic 
patients in sinus rhythm from a  
12-lead ECG

CNN 126,526 54,396 0.90 82.3 83.4 83.3 Attia  
et al. (18)

Detecting LV hypertrophy from a  
12-lead ECG

CNN 12,648 5,476 0.87 61.3 89.6 85.1 Kwon  
et al. (19)

Predicting gender & age from a  
12-lead ECG CNN

499,727 275,056 0.94 87.8 86.8 87.0 Attia  
et al. (20)

Diagnosing arrhythmia from a  
single lead ECG

CNN 29,163 328 0.97 78.0 – 80.9 Rajpurkar  
et al. (21)

Detecting MI from a 12-lead ECG CNN – 290 – 93.3 89.7 – Strodthoff  
et al. (22)

ML, machine learning; CNN, convolutional neural network; AUC, area under the curve; AF, atrial fibrillation; CKD, chronic kidney disease; 
LV, left ventricular; MI, myocardial infarction; ECG, electrocardiogram.

value of 33.8%, owing to the threshold of an ejection 
fraction of less than 30% (17). Another study used 12 
lead ECG data from 126,526 patients to develop a CNN 
to recognize patients with atrial fibrillation whilst still in 
sinus rhythm. When multiple ECGs for each patient were 
analysed, the algorithm was able to identify atrial fibrillation 
with an AUC of 0.90, a sensitivity of 82.3% and specificity 
of 83.4% (18). It is hypothesised structural heart changes 
such as myocyte hypertrophy, fibrosis and dilatation often 
precede atrial fibrillation and it was these structural changes 
that the CNN were able to identify in the ECG. However, 
the study is not without its limitations; the neural network 
was trained via retrospective classification on a population 
with higher incidences of atrial fibrillation so there may 
be a risk of over-fitting and the patient group with no 
atrial fibrillation may have undetected atrial fibrillation, 
and therefore those patients could have been labelled 
incorrectly, affecting algorithm accuracy. Nevertheless, 
the study did highlight that a low-cost, accessible and 
non-invasive test could be used to screen for patients with 
possible atrial fibrillation as a preventative and diagnostic 
tool (18). Further studies have explored this notion of 
detecting structural heart changes from routine ECGs, 
including detecting left ventricular hypertrophy using AI 

algorithms demonstrating an AUC of 0.87 when tested on 
over 5,000 patients (19). 

Attia et al. further found sex and age estimate could 
be elicited from a 12-lead ECG, where the estimated age 
may in fact serve as a physiological marker for a patient’s 
overall health status. The development of a CNN on data 
from 499,727 patients had an AUC of 0.94 and accuracy 
of 87.0% for classifying sex. When estimating age, the 
CNN overpredicted age when certain co-morbidities such 
as a low ejection fraction, hypertension or coronary artery 
disease were present (20). However, the study highlights 
the shortcomings of neural networks and ML, including 
the concept of the ‘black box’, where there is an inability 
to explain how and which features of the ECG caused the 
algorithm to produce certain outputs. This is often due to 
the relationships between multiple variables being non-
linear and intricate that makes precise analysis difficult (20). 

Studies demonstrating algorithmic performance that 
exceed a cardiologist are particularly interesting. A 2017 
study by Rajpurkar et al. trained a 34-layer CNN to 
detect 12 arrhythmia classifications from 29,163 patients, 
and was tested on 336 records against six board-certified 
cardiologists, yielding an aggregate positive predictive value 
of 0.80 compared to 0.72 in cardiologists and aggregate 
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sensitivity of 0.78 compared to 0.72 in cardiologists (21). 
More recently, Hannun et al. in 2019 developed a deep 
neural network to detect 12 arrythmia classifications 
from a single-lead ECG using a training dataset from 
53,549 patients, which was compared against the gold 
standard cardiologist consensus committee diagnoses with 
an AUC of 0.91 or higher in all rhythm classifications, 
not only outperforming the cardiologists but achieving 
higher AUCs for arrhythmias such as atrial fibrillation, 
atrioventricular block and ventricular tachycardia (23). 
Both studies only investigated single-lead ECGs, therefore 
limiting the applicability of the algorithm to 12-lead 
ECGs. Moreover, the labelling of the data beforehand 
by a technician and a cardiologist may have affected the 
reproducibility of the findings given that there was still 
some degree of uncertainty in the correct label. Any future 
application of an algorithm must undergo further levels 
of training and pre-processing (23). Further exploratory 
studies have demonstrated the ability of DL algorithms to 
detect myocardial infarctions with a sensitivity of 93.3% 
and specificity of 89.7%, a similar level of performance 
when compared to human cardiologists (22). Other studies 
have also shown the utility of applying deep convolutional 
neural network models to ECGs in noninvasively screening 
for hyperkalaemia in patient with chronic kidney disease 
through wearable technology (16) (Table 2).

Echocardiography

Echocardiography aids diagnosis and management of a 
multitude of cardiovascular conditions; the process however 
is resource intensive and requires interpretation by a trained 
professional (24). The data generated by echocardiograms 
are often complex and are usually sieved by the interpreter 
into what is immediately clinically useful. There are other 
additional features within the echocardiographic data, 
such as quantification of cardiac structures with diagnostic 
or prognostic value, which could be unearthed using ML 
techniques (25). The evidence base for the use of ML 
within echocardiography remains encouraging (Table 3).

The use of ML to automate the classification of 
functional and morphological cardiac features using two-
dimensional (2D) echocardiography has been promising. 
Narula et al. in 2016, used a ML learning framework to 
differentiate between hypertrophic cardiomyopathy and 
physiological hypertrophy in 139 athletes using speckle-
tracking echocardiographic data (26). The ML model 
showed sensitivity of 96.0% and specificity of 77.0% 

and AUC of 0.80 with highest diagnostic value seen at 
end systole (26). Given the small and specific sample size 
used, further studies on more heterogeneous populations 
would need to be conducted on larger samples to improve 
generalisability (26). A further large retrospective study of 
8,666 echocardiograms showed a high accuracy in using 
convolutional neural networks to identify hypertrophic 
cardiomyopathy (AUC, 0.93), cardiac amyloid (AUC, 0.87) 
and pulmonary arterial hypertension (AUC, 0.85) (27). 
Moreover, Sengupta et al. used an associative memory-
based ML algorithm to distinguish between constrictive 
pericarditis and restrictive cardiomyopathy using speckle-
tracking echocardiography data from 94 patients, achieving 
an AUC of 96.2% (28). With a small sample size and 
without separate training and testing datasets, the algorithm 
runs the risk of over-fitting. Therefore, it would be difficult 
to apply these algorithms beyond a research setting; more 
validation studies with larger training and testing datasets 
would be needed (28). 

Automated functional assessment of echocardiograms 
with discrimination between the three apical views: apical 
two-chamber, apical four-chamber and apical long-axis, 
can be challenging. A 2017 study by Khamis et al. used 
spatio-temporal feature extraction and supervised learning 
to distinguish these different views using 309 clinical clips; 
accuracies of 97%, 91% and 97% for apical two-chamber, 
apical four-chamber and apical long-axis, respectively, 
were achieved (29). The use of DL with the development 
of a CNN by Madani et al. in 2018 to classify 15 standard 
views on echocardiography based on images and videos 
from 267 transthoracic echocardiograms capturing real 
world variation, yielded 91.7% test accuracy without over-
fitting (30). One can argue methods such as occlusion 
testing and saliency mapping used by Madani et al. can 
help mitigate the limitations of ‘black-box’ algorithms. 
Moreover, the issue of clinical implications such as cost-
effectiveness is addressed, with the study showing that 
cost-savings were made by down-sampling (reducing 
image size without losing accuracy) (30).

A recent prospective study by Jiang et al. in 2019 
evaluated the use of 4-layer neural network to classify 
7,728 studies according to the 2016 American Society 
of Echocardiography (ASE)/European Association of 
Cardiovascular Imaging (EACVI) diagnostic algorithm 
for diastolic dysfunction severity by echocardiography, to 
then create a single neural network to output a continuous 
diastolic function score (31). The neural network reclassified 
the studies with 99% accuracy (31).



916 Haq et al. AI in cardiovascular medicine and imaging 

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):911-923 | http://dx.doi.org/10.21037/cdt.2020.03.09

T
ab

le
 3

 S
el

ec
te

d 
ap

pl
ic

at
io

ns
 o

f M
L

 a
lg

or
ith

m
s 

ap
pl

ie
d 

to
 e

ch
oc

ar
di

og
ra

ph
y

A
pp

lic
at

io
n

M
L 

m
od

el
Tr

ai
ni

ng
 

da
ta

se
t

Te
st

in
g 

da
ta

se
t

A
U

C
S

en
si

tiv
ity

 
(%

)
S

pe
ci

fic
ity

 
(%

)
A

cc
ur

ac
y 

(%
)

P
ub

lic
at

io
n 

(R
ef

. #
)

D
iff

er
en

tia
tin

g 
be

tw
ee

n 
H

C
M

 &
 p

hy
si

ol
og

ic
 h

yp
er

tr
op

hy
S

V
M

R
F 

C
N

N
–

13
9 

 
pa

tie
nt

s
0.

80
96

.0
77

.0
–

N
ar

ul
a 

et
 a

l. 
(2

6)

D
iff

er
en

tia
tin

g 
be

tw
ee

n 
H

C
M

, c
ar

di
ac

 a
m

yl
oi

d 
an

d 
PA

H
 

C
N

N
12

,0
35

  
st

ud
ie

s
8,

66
6 

st
ud

ie
s

H
C

M
 0

.9
3,

 
am

yl
oi

d 
0.

87
, 

PA
H

 0
.8

5

–
–

84
Z

ha
ng

 e
t a

l. 
(2

7)

D
iff

er
en

tia
tin

g 
be

tw
ee

n 
co

ns
tr

ic
tiv

e 
pe

ric
ar

di
tis

 &
 re

st
ric

tiv
e 

ca
rd

io
m

yo
pa

th
y

S
V

M
 K

L 
C

N
N

 R
F

–
94

  
pa

tie
nt

s
0.

96
–

–
93

.7
S

en
gu

pt
a 

et
 a

l. 
(2

8)

C
la

ss
ify

in
g 

st
ill

 e
ch

o 
im

ag
e 

ca
pt

ur
es

 in
to

 a
pi

ca
l 2

 c
ha

m
be

r, 
ap

ic
al

 4
 c

ha
m

be
r 

an
d 

ap
ic

al
 lo

ng
-a

xi
s 

vi
ew

S
V

M
 K

L 
R

F 
C

N
N

21
0 

cl
ip

s
99

 c
lip

s
–

–
–

95
.0

K
ha

m
is

 e
t a

l. 
(2

9)

C
la

ss
ify

in
g 

st
ill

 e
ch

o 
im

ag
e 

ca
pt

ur
es

 in
to

 1
5 

st
an

da
rd

 e
ch

o 
vi

ew
s

C
N

N
24

0 
 

pa
tie

nt
s

27
  

pa
tie

nt
s

–
–

–
91

.7
M

ad
an

i e
t a

l. 
(3

0)

C
la

ss
ify

in
g 

ec
ho

 s
tu

di
es

 a
cc

or
di

ng
 to

 th
e 

A
S

E
/E

A
C

V
I d

ia
gn

os
tic

 
al

go
rit

hm
 fo

r 
di

as
to

lic
 d

ys
fu

nc
tio

n 
se

ve
rit

y
C

N
N

6,
18

2 
 

st
ud

ie
s

1,
54

6 
st

ud
ie

s
–

–
–

99
.0

Ji
an

g 
et

 a
l. 

(3
1)

A
ss

es
sm

en
t o

f m
yo

ca
rd

ia
l v

el
oc

ity
K

L
–

55
 p

at
ie

nt
s

–
73

.2
78

.4
–

S
an

ch
ez

-M
ar

tin
ez

 
et

 a
l. 

(3
2)

D
et

ec
tin

g 
w

al
l m

ot
io

n 
ab

no
rm

al
ity

C
N

N
–

61
 p

at
ie

nt
s

–
81

.0
65

.4
75

.0
O

m
ar

 e
t a

l. 
(3

3)

Q
ua

nt
ify

in
g 

M
R

S
V

M
5,

00
4 

cl
ip

s
–

–
99

.4
99

.6
99

.5
M

og
ha

dd
as

i e
t a

l. 
(3

4)

M
L,

 m
ac

hi
ne

 le
ar

ni
ng

; C
N

N
, c

on
vo

lu
tio

na
l n

eu
ra

l n
et

w
or

k;
 A

U
C

, a
re

a 
un

de
r 

cu
rv

e;
 S

V
M

, s
up

po
rt

 v
ec

to
r 

m
ac

hi
ne

; R
F,

 r
an

do
m

 f
or

es
ts

; H
C

M
, h

yp
er

tr
op

hi
c 

ca
rd

io
m

yo
pa

th
y;

 
PA

H
, p

ul
m

on
ar

y 
ar

te
ria

l h
yp

er
te

ns
io

n;
 M

R
, m

itr
al

 re
gu

rg
ita

tio
n.



917Cardiovascular Diagnosis and Therapy, Vol 11, No 3 June 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):911-923 | http://dx.doi.org/10.21037/cdt.2020.03.09

Computed tomography coronary angiography (CTCA)

The use of CTCA imaging to investigate coronary artery 
disease (CAD) proves an accurate, non-invasive tool in 
clinical decision making. The use of CTCA in conjunction 
with ML could prove useful in improving diagnostic 
accuracy and predicting prognostic events (35). The use of 
ML in prognostic risk assessment was evaluated by Motwani 
et al. to predict 5-year all-cause mortality in 10,030 patients, 
who underwent CTCA with 25 clinical and 44 CTCA 
parameters assessed and compared against the Framingham 
risk score (FRS) and CTCA severity scores (36). The model 
consisted of feature selection before generating predictive 
classifiers using an ensemble classification approach and 10-
fold cross validation; the ML technique had an AUC of 0.79, 
higher than the FRS (0.61) and CTCA severity scores (0.63) 
for prediction of 5-year all-cause mortality (36). However, 
limitations include the manual selection of variables for 
the ML performance, possible selection bias when using 
observational data and not all variables determining 5-year 
all-cause mortality were used (36). 

A later study by van Rosendael et al. also utilised data 
from The Coronoary CT Angiography Evaluation For 
Clinical Outcomes International Multicenter (CONFIRM) 
registry, a multicenter, observational cohort prospectively 
collecting clinical, procedural and follow-up data, to create 
a ML risk score for CAD using standard 16 coronary 
segment sclerosis and composition information from CTCA 
readings (37). A boosted ensemble algorithm was used 
with discrimination of events better for the ML algorithm 
achieving an AUC of 0.77 compared to 0.69–0.70 in other 
scores (37). However, the data derived from the CONFIRM 
registry may introduce selection bias; the algorithm should 
be tested on an external study population to limit overfitting 
and to validate it further (37). 

The use of ML, using feature selection then model 
building using a boosted ensemble algorithm and ten-fold 
cross validation, to predict lesion-specific ischaemia by 
invasive fractional flow reserve (FFR) was conducted by Dey 
at el. from quantitative plaque measurements from CTCA, 
on 254 patients (38). They attained an AUC of 0.84 which 
was higher than individual CTCA measurements (38). A 
recent study in 2019 by von Knebel Doeberitz et al. assessed 
the use of CTCA derived plaque markers in conjunction 
with ML derived CT-derived fractional flow reserve (CT-
FFR), a validated alternative to invasive FFR, to predict 
major cardiac adverse events (MACE) compared to 
CTCA derived plaque markers alone; the use of additional 

ML derived CT-FFR had an AUC of 0.94 with higher 
discriminatory power for MACE prediction (39). The use 
of ML derived FFR could allow rapid functional assessment 
of ischemic lesions and risk assessment, but it still needs to 
be validated on external cohorts using larger sample sizes to 
achieve clinical implementation (39). 

Mannil et al. investigated the use of texture analysis, 
a method objectively quantifying texture of radiological 
images using interpixel relationships, and ML to detect 
myocardial infarction (MI) on non-contrast enhanced low 
radiation dose CTCA images on 87 patients (40). Two 
models were used; model I distinguished between controls, 
acute MI and chronic MI, and model II between controls 
and cases (40). Model I achieved a sensitivity of 69.0% 
and specificity of 85.0%, model II achieved a sensitivity 
of 86.0%, specificity of 81% and an AUC of 0.78 (40). 
These models were compared to two independent readers 
with 4 years’ experience in cardiology, and they were 
unable to detect any signs of MI on the imaging (40). This 
does suggest the ability for ML to surpass a radiologist’s 
ability to detect abnormalities hidden from the trained 
eye. Despite this possibility, akin to most cases of ML, 
overfitting of data remains a large obstacle with selection 
bias, and in this particular study, the small study sample is 
a major limitation (40). 

Cardiac nuclear imaging

Nuclear imaging such as myocardial perfusion single-
photon emission computed tomography (SPECT) is 
a common non-invasive stress imaging for coronary 
artery disease (CAD). Because of variation in clinical 
presentations of patients with CAD who often present 
with multiple comorbidities, interpretation of SPECT 
imaging is challenging (41). ML is being used to help 
improve the accuracy of diagnosing CAD. Betancur  
et al. used 1,638 patients without known CAD to develop 
CNNs for predicting CAD (DL) compared to total 
perfusion deficit (TPD), achieving an AUC of 0.80 (DL) 
compared to 0.78 (TPD), per-patient sensitivity of 82.3% 
(DL) compared to 79.8% (TPD), and per-vessel sensitivity 
of 69.8% (DL) compared to 64.4% (TPD). However, 
improvements in the model could be made by using a 
larger training dataset, and limitations of the study include 
the visual interpretation of the degree of stenosis rather 
than quantitative assessment (42).

Improving detection of CAD was also investigated by 
Arsanjani et al., by combining quantitative perfusion and 
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functional variables from SPECT, using a ML algorithm 
on data collected from 957 patients (43). The performance 
of the algorithm was compared to visual segmentation 
scoring by two experienced readers, the diagnostic 
accuracy achieved by the algorithm was 86.0% with AUC 
of 0.92, better than TPD (accuracy of 81.0% and AUC of 
0.90) and interpretation by two readers (accuracy of 84% 
and AUC of 0.87 and 0.88) (43). The study highlighted 
that the diagnostic accuracy of MPS may be employing 
ML (43). The population had suspected but not known 
CAD; in medicine, diagnoses may be made with an 
element of uncertainty depending on clinical evaluation, 
but when developing a ML algorithm, this ambiguity is 
not taken into account. Moreover, the studies had limited 
number of feature classifications, limiting the algorithms 
diagnostic accuracy in different patient populations. 

Cardiac magnetic resonance (CMR) imaging

In CMR, ML has been applied to functional indices, 
particularly measuring left ventricular function, relevant 
for conditions such as myocardial hypertrophy, myocardial 
ischemia and heart failure (44). A study by Luo et al. utilised 
a DL convolutional neural network for 1140 patients for left 
ventricle volume, end-diastolic volume (EDV), end-systolic 
volume (ESV) and ejection fraction (EF) estimation (44). 
Accuracy was tested using a linear regression fit (y=ax+b, 
ideally a=1, b=0), with accuracies of y=0.91x+11.7 for ESV, 
y=0.97x+9.5 for EF and y=0.87+0.2 for EDV (44). The 
use of automated and ML-powered left ventricle volume 
prediction shows promise in being used clinically following, 
albeit after more studies on larger datasets (44). 

A study by Bernard et al. used the “Automatic Cardiac 
Diagnosis Challenge” dataset (ACDC), the largest publicly 
available and fully annotated dataset for CMR, to assess 
how well DL algorithms from 10 prior studies can carry 
out CMR assessment via segmentation and classification of 
pathologies (45). Results showed that DL attained a mean 
correlation score of 0.97 for extraction of clinical indices 
and an accuracy of 0.96 for automatic diagnosis (45). The 
results do suggest that automated CMR analysis could be 
achieved and implemented into clinical practice. However, 
the study does highlight the concept of a ‘diagnostic black-
box’ where there is doubt regarding how the algorithm 
makes decisions, which would be an obstacle in clinical 
practice as a diagnostic summary should be accompanied 
with a report detailing the clinical reasoning (45). 

Not only can CMR data be used for automated 

functional assessment, but a study by Dawes et al. shows 
that data on cardiac motion can be been used to predict 
patient survival via features of right ventricular failure in 
pulmonary hypertension (46). The study used CMR scans 
from 256 patients with recently diagnosed pulmonary 
hypertension and supervised learning was used to estimate 
which 3-dimensional systolic motion patterns correlated 
best with prediction of survival. It achieved an AUC 
of 0.73 compared to 0.60 in conventional imaging and 
haemodynamic, functional and clinical markers alone (46). 

The role of the EHR 

The transition to EHR has resulted in an increase in the 
volume of complex patient data. The datasets collected, 
although large and patient-specific, are often scattered 
and potentially disorganized, including multiple variables 
ranging from medications, laboratory values, imaging 
results, physiological measurements and history notes. 
Therefore, generating a predictive algorithm may prove 
difficult using traditional models, such as logistical 
regression. However, ML may thus, offer a way to 
understand the complex relationships between the complex 
variables within EHR datasets (7) (Table 4).

Miotto et al. used unsupervised deep feature learning 
to capture relationships in aggregated EHR datasets of 
700,000 patients. The ML algorithm had an AUC of 0.87 
in predicting which patients would go on to develop non-
hypertensive heart failure and an AUC of 0.85 in predicting 
which patients who had a MI (47). The algorithms’ major 
limitations where it could not process laboratory test results 
and the ‘black box’ phenomenon. A 2016 multicentre trial 
compared ML models with logistical regression models in 
predicting adverse outcomes in hospitals, such as cardiac 
arrest, intensive care unit transfer, or death (48). Using 
demographic variables, laboratory values and vital signs 
from the EHR of 269,999 patients, the ML algorithm 
was able to detect adverse events with an AUC of 0.80 
compared to 0.77 in linear predictors and the Modified 
Early Warning Score (MEWS) of 0.70 (48). However, the 
data was collected from five Illinois hospitals, which limits 
generalisability to other demographic groups. Additionally, 
a standardised framework was used and not all available ML 
methods were evaluated (48). 

The use of EHR to predict the risk of readmission 
within 30 days in patients with heart failure was evaluated 
by Frizzell et al., using ML (least-absolute shrinkage and 
selection operator, random forest and gradient boosted) 
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compared with traditional logistical regression, but only 
yielded a C-statistic ranging from 0.59 to 0.62 (49). The 
study suggested limited applicability of ML algorithms for 
the predictive value of 30-day readmission for patients with 
heart failure (49). However, a more recent study by Shameer 
et al. also used ML to predict 30-day readmission rates in a 
single centre cohort of 1,068 patients using variables from 
EHR, such as diagnosis codes, medications, laboratory 
measurements, surgical procedures and vital signs (50). The 
first step involved classification of cases into ‘re-admitted’ 
and ‘not re-admitted’ before using a correlation-based 
feature selection method to combine features predictive of 
re-admission; after training and testing, an AUC of 0.78 
was achieved with accuracy of 83.2%. Replication of similar 
methods on larger datasets could have promising results in 
using ML for risk prediction (50). Similar to other studies, 
the algorithm would benefit from being used in multiple 
sites and applying the study to a larger cohort and using 
a systematic method for feature selection could improve 
robustness. 

Choi et al. investigated the use of events in EHR to 
generate a recurrent neural network to predict the incidence 
of heart failure in patients with data from 3,884 heart failure 
cases and 28,903 controls, compared against regularized 
logistic regression, neural network, support vector machine, 
and K-nearest neighbor classifier approaches (51). A 
12-month observation window was used and yielded an 
AUC 0.78 compared to logistical regression AUC of 0.75; 
this increased further to an AUC of 0.833 when using an 
18-month observation (51).

Limitations and challenges

Despite the promise of AI in cardiovascular medicine, there 
remain many challenges to date. These can be divided into 
limitations relating to existing studies, pitfalls with the 
technology and challenges in the clinical translational ability 
of current AI techniques.

Many studies thus far employ ‘narrow’ AI use-cases, 
where the context of utilising ML is clearly defined with 
variables pre-selected by clinicians. Hence, much of the 
ML is based on past medical data generated using training 
datasets and runs the risk of overfitting and selection 
bias. Overfitting refers to the phenomenon that models 
developed on training sets do not generalise well to unseen 
data. This is more of a problem in studies applying ML 
algorithms to echocardiography, CTCA, SPECT and 
CMR. This is reflected in the majority of these studies 
not using separate training and testing sets, likely because 
of less mature ML algorithms (26,28,32,33,36,44-46). 
Furthermore, algorithm development requires massive 
data sets and minimising inherent biases in the data is a 
challenge. A lack of diversity in training datasets leads to 
downstream consequences of algorithms being inherently 
biased and skewed to those types of patients most 
contributing to model development (4).

Albeit not unique to ML, algorithm development is not 
immune from issues of privacy, security and data breaches. 
Moreover, the lack of existing frameworks and guidelines 
governing how to develop algorithms with sensitive patient 
data, cross-collaborate between institutions and ownership 
of patient data derived algorithms remain obscure. Another 

Table 4 Selected applications of ML algorithms applied to electronic health records (EHR)

Application Training dataset 
(patients)

Testing dataset 
(patients)

AUC Publication (Ref. #)

Predicting non-hypertensive HF 700,000 76,214 0.87 Miotto et al. (47)

Predicting MI 700,000 76,214 0.85 Miotto et al. (47)

Predicting clinical deterioration on the wards 
(cardiac arrest, ICU transfer or death)

161,999 108,000 0.8 Churpek et al. (48)

Predicting hospital re-admission within 30 days 
in HF patients

39,533 16,944 0.52 Frizzell et al. (49)

747 321 0.78 Shameer et al. (50)

Predicting incidence of HF from EHR events 265,336 33,317 0.78 Choi et al. (51)

AUC, area under curve; HF, heart failure; MI, myocardial infarction; ICU, intensive care unit.



920 Haq et al. AI in cardiovascular medicine and imaging 

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):911-923 | http://dx.doi.org/10.21037/cdt.2020.03.09

challenge of applying ML algorithms to patient care is the 
concept of the ‘black-box’ (52). It is the notion that for 
ML decision support tools, the outputs generated from the 
input variables occur in a fashion where the rationale for 
decision making remains unclear to clinicians. For example, 
it is not clear how exactly CNN are able to detect patients 
with atrial fibrillation whilst still in sinus rhythm but instead 
it is hypothesised structural heart changes detected from 
the ECG is what CNN are using (18). Thus, research must 
be rigorously conducted to allow steps and rationale behind 
each step to be evaluated (53).

Another limitation to consider when thinking about 
the implementation of AI/ML within clinical practice is 
that the added value of the technology within hospitals has 
yet to be established in the literature. Studies pertaining 
to the clinical, patient and economic outcomes of such 
ML algorithms are lacking (54). These factors are a major 
lever in determining technology adoption into the clinical 
workplace, because the buy-in from clinicians relies on data 
and a strong evidence base that the technology can deliver 
high-quality care. Therefore, current ML algorithms 
require multiple future validation studies, necessitating 
sharing of data, which brings about important patient 
confidentiality and regulation issues (55). 

Future work

The majority of studies thus far have focused on previously 
generated data in silico. The next steps involve multi-centre 
randomized control trials prospectively investigating ML 
algorithms using unseen data sets to further validate the 
utility and reproducibility in the clinical setting. Moreover, 
such trials will need to evaluate the downstream impact 
of ML algorithms on patient outcomes and treatment 
pathways, an area sparsely studied to date (4). This involves 
centres prospectively labelling and annotating data to 
create multicentre data sets on which ML algorithms can 
be trained. These algorithms built on diverse populations 
at low risk of overfitting, then be tested on data sets from 
multicentre populations not participating in training the ML 
model. Such trials will need a multidisciplinary approach 
between centres and regulatory bodies in creating shared 
frameworks for algorithm standards, data set protocols, ML 
transparency and issues pertaining to data ownership. 

It is important to note the interdisciplinary and cross-
industry collaboration needed to further this field. Data 
scientists are at the heart of building ML algorithms and 

large technology companies are a rich source of data 
scientists and AI innovation (15). With such a vested 
interest in this domain, technology companies will 
begin to be more involved in prospective multi-centre 
clinical trial. One example is the Apple Heart Study: a 
large prospective clinical trial estimating the proportion 
of participants with atrial fibrillation from an irregular 
heart rate notification on a wearable technology passively 
monitoring participants (15). However, parallels, lessons 
and frameworks developed from pharmaceutical industry 
involvement in large clinical trials for breakthrough drugs 
must be correlated to technology company’s involvement 
in clinical trials for breakthrough AI algorithms, especially 
the ethical nuances of managing conflicts of interests 
between researchers, data scientists and algorithm 
intellectual property owners.

Conclusions

AI is potentially changing much of our life, but is only 
just beginning its journey in cardiovascular medicine 
and imaging. Studies to date have shown great promise 
in classifying disease phenotypes, improving diagnostic 
accuracy, screening for disease processes and better 
predicting disease progression, risk and prognosis in 
multiple imaging and non-imaging modalities (Tables 2,3,4). 
Leveraging AI in the context of such studies holds promise 
for clinicians, health systems and patients. However, there 
remain considerable limitations with respect to existing 
studies, underlying technology and the clinical translation 
of such techniques. Prospective, multi-centre randomized 
controlled trials utilizing interdisciplinary and cross-
industry collaboration are needed to further validate the 
utility and reproducibility of AI in cardiovascular medicine. 
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