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Introduction

Translational research is fundamentally the multidirectional 
integration of basic, patient-oriented and population-based 
research, with the long-term aim of improving the health 
of the public (1). Appearing in peer reviewed literature 
as early as 1993, what best defines translational research 
has been less clear than that of basic and clinical research. 
However, at its core, translational research aims to inform 
the understanding and treatment of clinical disease through 
mechanistic insight, essentially moving observations from 
the researcher’s bench to the patient’s bedside and the wider 
community (2).

There have been few investigative tools in cardiovascular 
research that have provided as transformative insights as 
intravascular imaging has for coronary artery disease (CAD). 
The ability to directly visualize atherosclerosis and its 
temporal course has bridged the critical gap between cellular 
models of atherogenesis and the anatomical expression of 
disease post-mortem. Initially utilized in pre-clinical models 
of disease, endovascular imaging has moved from human 
imaging biomarker to clinical tool in the contemporary 
treatment of CAD. More than 30 years of technological 
advancement has refined intravascular ultrasound (IVUS) 
and more recently spawned the development of other 
modalities, such as optical coherence tomography (OCT) 
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and near-infrared spectroscopy (NIRS).
While traditional invasive coronary angiography 

(CAG) remains the gold standard for the determination 
of obstructive, luminal stenosis in clinical practice (3), 
its inability to image the vessel wall and its quantitative 
imprecision caused by inherent variations in equipment and 
inter-observer differences, have limited its capacity for serial 
evaluation of plaque burden (PB) and response to therapy (4).  
In contrast, the endovascular imaging modalities listed 
above, some of which are now integrated, provide a means 
of measuring temporal changes within the vessel wall with 
high fidelity. This review describes the currently available 
intracoronary imaging modalities and summarizes the 
evidence that their use has generated in: (I) determining 
the natural history of CAD and its associated risk of major 
adverse cardiovascular events (MACE) (5); (II) evaluating 
the responsiveness of CAD to established and experimental 
therapeutic interventions (6); and (III) guiding percutaneous 
coronary intervention (PCI).

Invasive imaging modalities for serial CAD 
assessment

IVUS

Basic or conventional grayscale IVUS involves the 
positioning of a catheter containing a high-frequency 
ultrasound transducer within the lumen of coronary arteries 
adjacent to the vessel wall. This permits cross-sectional 
imaging and provides an extensive view of the distribution 
and nature of PB within the vessel wall (7) (Figure 1).

Virtual histology IVUS (VH-IVUS) utilizes advanced 
radiofrequency analysis of reflected ultrasound signals. A 
reconstructed color-coded tissue map of plaque composition 
is superimposed onto conventional cross-sectional grayscale 
IVUS images, allowing fibrous, fibrofatty, necrotic core and 
dense calcific material to be distinguished (8).

OCT

OCT employs near-infrared light, typically of a wavelength 
of approximately 1,300 nm, to create detailed images 
of plaque atheroma in the coronary arteries (Figure 1). 
Its particular advantage is its high spatial resolution 
(approximately ten-times higher than that of IVUS) with an 
axial resolution of up to 10 µm and lateral resolution of up 
to 20 µm (9,10). This enables qualitative and quantitative 
analysis of the atheroma below the intimal endothelial 

surface, providing the ability to discriminate between 
fibrous, lipid-rich and calcified plaques (9,11,12), quantitate 
lipid content and macrophage burden (11,13) and accurately 
measure fibrous cap thickness (12). However, the benefit 
of high imaging resolution is offset by OCT’s poor tissue 
penetration, compromising its ability to image the full 
thickness and deeper layers of atherosclerotic plaques.

NIRS

NIRS is based on the absorbance of light by organic 
molecules and determines the characteristics of the chemical 
components of tissue samples. In its most widely used form 
it is used for lipid detection (14). Spectroscopic information 
is transformed into a probability of lipid core that is mapped 
to a red-to-yellow color scale, with low probability of lipid 
shown as red and high probability of lipid shown as yellow. 
Yellow pixels within the analyzed segment are then divided 
by all viable pixels to generate the lipid-core burden index 
(LCBI) (15) (Figure 1).

Near-infrared fluorescence (NIRF) and near-infrared 
autofluorescence (NIRAF)

NIRF has been evaluated in pre-clinical models of 
atherosclerosis because of its capacity to detect the biology 
of the plaque, such as inflammatory protease activity, 
macrophage composition, chemokines, presence of fibrin, 
cellular apoptosis and neo-angiogenesis. This technology 
uses near-infrared laser light to excite and detect fluorescent 
molecular structures, or fluorophores, which are cable of 
binding to various molecular targets. Intravascular NIRF-
sensing catheters, integrated with OCT systems, have 
been used to in hybrid catheters to detect NIRF-emitting 
agents in context of structural images obtained with OCT. 
Early in its use NIRF has been coupled with indocyanine 
green (ICG), an amphiphilic near-infrared fluorophore, to 
identify plaque features of instability in areas of endothelial 
disruption, including inflammation, angiogenesis and lipid-
rich plaque (LRP) (16,17). The development of more 
specific NIRF-emitting probes which target macrophage 
mannose receptors have shown potential to extend this 
panel (18). The first hybrid OCT-fluorescence imaging 
has been performed in patients using autofluorescence, 
without the need to administer an exogenous contrast  
agent (19). Although it was postulated that autofluorescence 
is associated with products of plaque hemorrhage, further 
studies are needed to demonstrate the clinical relevance of 
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Figure 1 Different intracoronary plaque imaging modalities. (A) Cross-sectional view of gray-scale IVUS imaging demonstrating coronary 
PB; (B) coronary atherosclerotic plaque imaging with OCT; (C) coronary artery imaging with a cross-sectional view of IVUS highlighting 
plaque and NIRS demonstrating lipid (yellow) content. IVUS, intravascular ultrasound; PB, plaque burden; OCT, optical coherence 
tomography; NIRS, near-infrared spectroscopy.
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autofluorescence imaging and its mechanism (20).

Role of intracoronary imaging in translational 
research

Translational research, utilizing intracoronary imaging, has 
focused on several principle areas: (I) assessing the natural 
history of stable and unstable (vulnerable) atherosclerotic 
plaque; (II) therapeutic modulation of atherosclerosis; and 
(III) guiding the deployment of stents and scaffolds during 
PCI and monitoring their progress over time.

Histological basis of atherosclerosis

Atherosclerotic cardiovascular disease is the principle 
contributor to mortality worldwide (21,22). Despite 
significant advances in basic and clinical research, this multi-
factorial process, promoted by a myriad of risk factors, 
continues to be the greatest health burden on our society (23).  
Understanding atherosclerotic plaque microstructure 
in relation to molecular mechanisms that underlie its 
initiation, progression and clinical consequences, is required 
to provide the best chance of combating it.

Histologically atherosclerosis begins with focal thickening 
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of the intima of large and medium-sized arteries with 
accumulation of dendritic cells, lymphocytes, lipid-laden 
macrophages or foam cells, and extracellular matrix. It is the 
early accumulation of lipids that produces the fatty streak. 
Fibroatheroma evolves from the fatty streak with progressive 
accumulation of smooth muscle cells, connective tissue and 
a deeper extracellular lipid pool, with more advanced lesions 
often containing a necrotic lipid-rich core. Intra-plaque 
hemorrhage is a common histological feature of advanced 
atherosclerotic lesions and is a critical element to the 
development of plaque instability, which may lead to plaque 
rupture and thrombosis (23). Fundamentally, atherosclerosis is 
an inflammatory disease process beginning in the endothelium 
that is precipitated by increased levels of circulating 
oxidized low-density lipoprotein (LDL) (23). Macrophages 
that have taken up oxidized LDL release a variety of 
inflammatory substances, cytokines and growth factors 
(24,25); including monocyte chemotactic protein-1 (26),  
intracellular adhesion molecule-1 (27), interleukins (28)  
and tumor necrosis factor alpha (29). Pro-inflammatory 
cytokines enhance expression of cell surface molecules to 
adhesion molecules, induce cell proliferation, contribute 
to the production of reactive oxygen species and stimulate 
matrix metalloproteinases (MMP) which promote plaque 
rupture (24,25).

Mechanisms of plaque complication leading to 
acute coronary syndrome (ACS)

ACS predominantly results from two distinct plaque 
complications—rupture and erosion—that lead to 
thrombosis and manifest as unstable angina, acute 
myocardial infarction (MI), or sudden cardiac death (30). 
Plaque rupture is most frequent, accounting for 60–75% 
of ACS cases (31-33). It typically develops in a lesion with 
a necrotic core and a thin, overlying fibrous cap. Following 
disruption of the macrophage and T-lymphocyte infiltrated 
fibrous cap, a luminal thrombus develops due to physical 
interaction between platelets and the thrombogenic necrotic 
core (33). Although research into the mechanism of plaque 
rupture is ongoing, it is widely believed that disruption 
occurring at the fibrous cap is associated with systemic 
activation of adaptive immunity (34). While necrotic core 
expansion and positive remodeling may be associated with 
plaque progression and lesion vulnerability, breakdown of 
extracellular matrix proteins by secreted MMPs are believed 
to be the predominant mechanistic pathway resulting in 
degradation of the fibrous cap (35). Healed lesions can 

occur at sites of prior rupture and thrombus formation (36). 
Healed ruptures are responsible for a small minority of 
ACS cases and frequently exhibit multiple layers of necrotic 
cores interspersed by fibrous tissue (37). In a minority of 
patients, plaque rupture is determined by local mechanisms 
rather than by diffuse activation of inflammatory cells. 
Fibrocalcific plaques can penetrate the lumen and disrupt 
the luminal surface, with little or no underlying necrotic 
core (30).

In contrast, plaque erosion is characterized by the absence 
of endothelium rather than fibrous cap disruption (38,39). 
Typically, most eroded lesions lack a necrotic core and have 
a thick fibrous cap. The primary cellular characteristics of 
eroded plaques include an abundance of smooth muscle 
cells and proteoglycan matrix, with few macrophages 
and T-lymphocytes seen close to the lumen (40).  
Mechanistic observations indicate that these plaques lead 
to a disturbance of flow resulting in toll-like receptor-2 
activation, recruitment of neutrophils, and subsequent 
promotion of de-endothelialization. This allows flowing 
blood to come in contact with plaque collagen resulting in a 
neutrophil-rich thrombus formation (41,42).

Role of intravascular imaging in detecting 
vulnerable plaque

The term ‘vulnerable plaque’ was initially used in 1989 
by Muller et al. to describe plaques that are predisposed 
to spontaneous rupture and cause clinical sequelae (43). 
Pathological studies have identified that plaques with a 
specific phenotype including a thin fibrous cap (<65 μm),  
a large lipid pool, and activated macrophages near 
the fibrous cap, are at increased risk of rupture and 
therefore vulnerable (30,31,44). Thin-cap fibroatheroma 
(TCFA) was first described by Kolodgie et al. and is 
considered the major precursor lesion for ACS (45). 
Notably, retrospective studies have revealed that most 
atherosclerotic plaques responsible for ACS cause only 
mild stenoses angiographically (46,47), highlighting the 
deficiencies of an imaging modality that fails to provide any 
evaluation of the plaque residing within the arterial wall. 
Despite the improved prognosis for ACS patients treated 
with pharmacologic therapies and PCI (48-50), recurrent 
MACE occur in a substantial proportion of cases. Several 
prospective clinical studies have investigated the potential 
for intracoronary imaging to identify vulnerable plaques 
and those patients at risk of suffering repeat cardiovascular 
events (51-57).
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IVUS

The PROSPECT (Providing Regional Observations to 
Study Predictors of Events in the Coronary Tree) and VIVA 
(VH-IVUS in Vulnerable Atherosclerosis) studies were 
the first to use three-vessel grayscale and radiofrequency 
IVUS imaging to examine its efficacy in detecting non-
culprit vulnerable plaque. In PROSPECT, 697 patients 
with ACS underwent IVUS and VH-IVUS imaging after 
PCI (51). During a median follow-up period of 3.4 years, 
the cumulative rate of MACE was 20.4%. Atherosclerotic 
lesions with a minimum lumen area ≤4 mm2, a PB ≥70% 
and VH-IVUS defined TCFA phenotype (requiring >10% 
confluent necrotic core on three consecutive frames and 
an arc of necrotic core in contact with the lumen surface 
for ≥36°, highlighting the inadequate spatial resolution of 
IVUS to identify thin fibrous cap) were eleven times more 
likely to cause MACE than simple lesions (hazard ratio, 
11.05, P<0.001). However, the positive-predictive value 
(PPV) for these high-risk plaque features for future events 
was low (18.2%). In the VIVA study, 170 patients with 
stable angina or ACS undergoing PCI had a total of 1,096 
plaques classified (52). Over a median follow-up of 625 days, 
19 lesions resulted in MACE (13 non-culprit and 6 culprit). 
Non-culprit lesion factors associated with increased non-
restenotic MACE included VH-TCFA (hazard ratio, 7.53, 
P=0.038) and PB >70% (hazard ratio, 8.13, P=0.011). On 
a patient-based analysis, only 3-vessel non-calcified VH-
TCFA was associated with increased non-restenotic MACE 
(hazard ratio, 1.79, P=0.004).

In the ATHEROREMO-IVUS (European Collaborative 
Project on Inflammation and Vascular Wall Remodeling 
in Atherosclerosis- Intravascular Ultrasound) study, 581 
patients undergoing CAG for ACS or stable angina had 
single, non-culprit vessel VH-IVUS imaging (53). Patients 
with a TCFA lesion phenotype and an increased PB (>70%) 
had an increased incidence of MACE at 12-month follow-
up. However, the MACE rate was low, as was the PPV (23%) 
of these plaque features and it was impossible to determine 
whether VH-IVUS provided further prognostic information 
beyond clinical risk factors. In the PREDICTION 
(Prediction of Progression of Coronary Artery Disease and 
Clinical Outcome Using Vascular Profiling of Shear Stress 
and Wall Morphology) study, vascular profiling CAG and 
IVUS were used to reconstruct each artery and calculate 
endothelial shear stress (ESS) and plaque characteristics  
in vivo (54). Three-vessel vascular profiling was performed 
at baseline in 506 patients with ACS treated with PCI and 

again in a subset of 374 (74%) consecutive patients 6 to 
10 months later to assess plaque natural history. Clinical 
events were infrequent. Large plaque size and low ESS 
independently predicted the exploratory end points of 
increased PB and worsening, clinically relevant luminal 
obstructions. The combination of independent baseline 
predictors had a 41% PPV and 92% negative-predictive 
value (NPV) to predict plaque progression.

The presence of plaque ultrasonic attenuation and 
intraplaque echolucency on grayscale IVUS have also 
been linked to increased cardiovascular events (58-60). 
Comparison with NIRS has shown that these IVUS 
characteristics are related to lipid content (61,62), with the 
probability of lipid core highest in attenuated plaques and 
the risk of biologic instability greatest with superficial rather 
than deep plaque attenuation (62). 

Taken together, IVUS-based studies demonstrate that 
TCFA, high PB and superficial plaque attenuation are each 
characteristics of vulnerable plaques that are at high-risk 
of future atherothrombotic events, aligning well with data 
from histological post-mortem studies (30,31,44). However, 
their results also highlight that the presence of these 
features individually or collectively, carries disappointing 
PPV for future MACE, controverting the utility of IVUS in 
routine clinical practice for identifying high-risk lesions.

OCT

Conventional ultrasonic imaging lacks the resolution to 
reliably distinguish individual plaque components currently 
considered to be determinants of vulnerability. Lipid-rich 
TCFAs are more unstable and prone to rupture and can 
be identified and quantitated by OCT. The relationship 
between culprit site LRP and cardiovascular events has 
been documented in patients with ACS utilizing OCT 
(63,64). A retrospective trial established that OCT-detected 
non-culprit LRP led to a two-fold increase in non-culprit 
MACE (hazard ratio, 2.06, P=0.036), primarily driven by 
revascularization for recurrent ischemia (65). OCT has also 
been used to identify macrophages, that exert a central role 
in plaque destabilization by releasing proteolytic enzymes 
and other pro-inflammatory mediators (55). Di Vito et al. 
applied OCT to quantify macrophage burden in coronary 
plaques by using tissue property indexes, particularly 
normalized standard deviation (NSD) and granulometry 
index (66). However, other groups have questioned the 
specificity of the methods used and highlight the fact that 
macrophages comprise heterogeneous pro-inflammatory 



1485Cardiovascular Diagnosis and Therapy, Vol 10, No 5 October 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(5):1480-1507 | http://dx.doi.org/10.21037/cdt-20-1

and anti-inflammatory subtypes that have diverse 
atherogenic and protective roles in plaque formation, which 
are not able to be distinguished by OCT (67).

In the CLIMA (relationship between Coronary pLaque 
morphology of the left anterior descending artery and long 
terM clinicAl outcome) study, 1,003 patients undergoing 
CAG were subjected to OCT imaging of the proximal 
left anterior descending coronary artery (56). Cardiac 
death and target vessel MI was almost eight-fold higher in 
patients who had plaques with a TCFA phenotype, lipid arc 
>180°, minimum lumen area <3.5 mm2 and macrophage 
accumulation, compared to those that did not have any of 
these high-risk plaque characteristics (18.9% vs. 3.0%). 
Therefore, like IVUS, OCT had excellent NPV (97%) 
when high-risk characteristics were absent, but poor PPV 
(19%) even when all high-risk features were present. More 
recently, an automated OCT image processing algorithm 
was used in 42 patients undergoing elective PCI to enhance 
the external elastic lamina (EEL) contour and potentially 
improve measurement of PB compared to standard  
OCT (68). Pearson’s correlation coefficients between IVUS 
and standard OCT measurements of PB were 0.61, 0.67, 
0.76, 0.78 and 0.87 for fibroatheromas, mixed plaques, 
fibrocalcific plaques, fibrous plaques, and pathological 
intimal thickening, respectively. These correlation 
coefficients increased to 0.81, 0.83, 0.83, 0.84 and 0.94 when 
using the EEL-enhanced OCT images (P=0.003, P=0.004, 
P=0.08, P=0.13 and P=0.23, respectively). In comparison 
with conventional OCT, the EEL-enhanced OCT images 
had a higher sensitivity (79% vs. 28%, P<0.001) and 
specificity (98% vs. 85%, P=0.03) for detecting plaques with 
an IVUS PB ≥70% (Figure 2).

While the largest body of evidence indicates that 
atherosclerosis results from intimal accumulation of lipids 
and inflammatory cells, recent studies suggest that vascular 
inflammation begins in the adventitia and subsequently 
enters the media and intima from the outside of the 
vessel wall (69,70). The vasa vasorum (VV), a network 
of microvasculature originating in the adventitia are a 
primary site of response to vessel wall injury or insult. In 
atherosclerosis, the VV undergo expansion and infiltration 
into plaque, carrying with them inflammatory cells (69,70). 
The VV have also been demonstrated to play a role in 
plaque instability. Necropsy studies in patients who had 
died suddenly from coronary causes identified an increase 
in microvascular density associated with intraplaque 
hemorrhage (71). Taruya et al. utilized frequency-domain 
OCT (FD-OCT) to highlight the relationship between 

the VV increase and plaque vulnerability (72). Fifty-three 
patients underwent FD-OCT and were classified into five 
groups according to lesion characteristics: normal; fibrous 
plaque; fibroatheroma; plaque rupture; and fibrocalcific 
plaque. Signal-poor tubuloluminal structures in the 
adventitial layer were defined as VV, and within plaque as 
intraplaque neovessels. In the fibrous plaque group, the VV 
volume positively correlated with overall plaque volume 
(R=0.71, P<0.01). This correlation was thought to be the 
consequence of the VV restructuring which allows increased 
oxygen and nutrients to reach the vessel wall from the 
adventitia, promoting plaque progression. The intraplaque 
neovessels volume modestly correlated with plaque 
volume in the fibroatheroma and plaque rupture groups 
(R=0.53, P=0.04), demonstrating an association with plaque 
vulnerability. Imaging for microvasculature could therefore 
provide a new means of determining plaque vulnerability.

Increasing evidence suggests that the presence of 
cholesterol crystals (CCs) within plaque also increases its 
vulnerability, both by inducing inflammatory responses 
in plaque macrophages and neutrophils and by causing 
mechanical injury to the fibrous cap (73). FD-OCT enables 
visualisation of CCs in vivo which manifest as a thin, linear 
region of high signal intensity within the lipid plaque (74). 
OCT was implemented in a study of 250 patients with stable 
CAD to investigate for a relationship between CCs and 
other parameters of plaque vulnerability. Three hundred 
and thirty vessels containing 263 non-culprit and 113 culprit 
plaques were imaged prior to culprit lesion PCI. Thirty-
nine point six percent of patients had at least one CC in the 
culprit plaque, and this was associated with larger lipid arc 
(179.8°±72.1° for plaques with CCs vs. 111.1°±65.6° for 
those without, P=0.001) and a greater frequency of TCFA 
(30.3% vs. 2.1%, P=0.01) (74). Non-culprit plaques with 
CCs present also displayed other high-risk characteristics, 
including larger mean lipid arc, smaller fibrous cap thickness, 
and higher prevalences of TCFA, microchannel and plaque 
rupture than lesions with no CC present.

Dual modality imaging

The limited efficacy of grayscale IVUS, VH-IVUS and 
OCT imaging in predicting lesions that will undergo future 
atherothrombotic events is partly based on their respective 
limitations in detecting plaque composition and has led to 
evaluation of dual modality NIRS-IVUS imaging. NIRS 
has predominantly been used to quantitate lipid content 
within plaques. LRPs were first defined on NIRS as a lipid 
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Figure 2 Comparison of standard intracoronary imaging modalities with corresponding EEL-enhanced OCT. (A) OCT image of 
pathological intimal thickening; (B) corresponding EEL-enhanced OCT image enabling improved visualization of the EEL; (C) 
corresponding IVUS image of pathological intimal thickening; (D) OCT image of fibrous plaque; (E) corresponding EEL-enhanced 
OCT image revealing more EEL around the arterial circumference; (F) corresponding IVUS image of fibrous plaque; (G) OCT image of 
fibroatheroma plaque; (H) corresponding EEL-enhanced OCT image enabling improved visualization of the EEL deep to the plaque; (I) 
corresponding IVUS image of fibroatheroma plaque. Key; thin-cap fibroadenoma (arrow), lipid rich pool (arrowhead), EEL (star), intimal 
thickening (IT), fibrous plaque (F), fibroadenoma (FA). [Images adapted with permission from Gerbaub et al. (68)]. IVUS, intravascular 
ultrasound; OCT, optical coherence tomography; EEL, external elastic lamina.
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core >60° in circumferential extent with >200 µm depth 
and an overlying fibrous cap thickness <450 µm (75). A 
commonly used quantification of the lipid burden is the 
LCBI which is derived by dividing the number of yellow 
pixels by the total number of pixels available, multiplied 
by 1,000 (LCBI ranges from 0 to 1,000). The LCBI4 mm 

quantifies the greatest regions of LRP within the target 
region, divided into 4 mm coronary segments (76). Adding 
NIRS to conventional IVUS-derived PB in 116 coronary 
vessels in 51 autopsied hearts demonstrated that a combined 
PB and LCBI analysis significantly improved fibroatheroma 
detection accuracy (c-index 0.77, P=0.028 vs. PB alone). 
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In vivo comparisons of 43 age- and sex-matched patients 
yielded similar associations to those demonstrated ex vivo (6). 
In a number of cross-sectional studies, NIRS has identified 
large LRP at culprit sites in a majority of patients with ACS 
(77-79). Numerous prospective trials have demonstrated 
that either a high LCBI or LCBI4 mm is a strong predictor 
of MACE (57,80,81). Oemrawsingh et al. measured NIRS-
derived LCBI within a non-culprit vessel in 203 patients 
referred for angiography for stable angina pectoris or ACS 
and found that patients with an LCBI greater than the 
median of 43.0 had a four-fold increased risk of MACE 
during 1 year follow-up (16.7% vs. 4.0%, hazard ratio, 4.04, 
P=0.01) (57). Madder et al. showed that the presence of 
NIRS-determined large LRP, defined as maximum LCBI 
in 4 mm ≥400, increased risk of subsequent major adverse 
cardiovascular and cerebrovascular events (MACCE) (82). 
The LRP (Lipid-Rich Plaque Study of vulnerable plaques 
and vulnerable patients) study evaluated the efficacy of 
NIRS-IVUS in detecting vulnerable plaque. The study 
enrolled 1,241 patients with stable angina (46.3%) or 
ACS (53.7%) and assessed >5,000 lesions. The presence 
of LRP (LCBI4 mm ≥400) was associated with a four-fold 
higher event rate (hazard ratio 4.11, P<0.001). Further, for 
each 100 unit increase of max LCBI4 mm, the risk of non-
culprit MACE increased by 18%, and patients with max  
LCBI4 mm ≥400 were at 87% higher risk of non-culprit 
MACE at 24-month follow-up (83). The ATHEROREMO-
NIRS substudy of 203 patients showed that plaque 
composition, in particular an increased LCBI was associated 
with worse prognosis (57). Ongoing studies including 
PROSPECT II (NCT02171065) will utilize IVUS and 
NIRS to test the potential value of vulnerable plaque 
detection.

Integrated, dual modality imaging was similarly used in 
a first-in-man study in which simultaneous intracoronary 
OCT and NIRAF image data were obtained from 12 patients 
undergoing PCI (19). High NIRAF signal was elevated in 
plaques with a high-risk morphological phenotype, specifically 
TFCA, regions of cap disruption, and in-stent restenosis (ISR). 
By contrast, NIRAF signal was negative or low in plaques 
with a low-risk microstructural phenotype as determined by 
OCT. High intensity NIRAF was limited to plaque regions 
that showed OCT evidence of macrophage accumulation. The 
study highlighted that multimodality technologies combining 
microstructural and fluorescence imaging can potentially 
improve the capacity to predict plaque vulnerability and refine 
patient and lesion specific risk (Figure 3).

Summary

Thus far all intravascular evaluation of high-risk plaque 
has demonstrated excellent NPV but poor PPV and 
further studies are needed to evaluate the incremental 
benefit of intracoronary imaging over clinically derived 
risk stratification and guidance of treatment. Furthermore, 
imaging based characterization of vulnerable plaques 
has almost entirely been performed in the framework of 
identifying features predictive of plaque rupture and this 
may not be applicable to identifying plaques at risk of 
erosion, known to be responsible for 25–40% of ACS (30). 
Conventional IVUS imaging lacks sufficient resolution to 
detect impairment of endothelial cells. However, Jia et al. 
showed that OCT has the capability to identify erosion (84). 
Recently a novel microscopic imaging technology, termed 
micro-optical coherence tomography (µOCT), that offers 
a resolution of 1 µm has been used successfully in a porcine 
model to enable endothelial cell visualization (85) and may 
play a future role in better understanding the pathogenesis 
of ACS caused by plaque erosion.

Intravascular imaging in spontaneous coronary 
dissection

Spontaneous Coronary Artery Dissection (SCAD) is 
also becoming an increasingly recognized cause of ACS 
particularly among women under 50 years of age where 
the prevalence of SCAD has been reported to be as high 
as 8.7%, increasing to 10.8% in the subgroup with ST-
elevation myocardial infarction (STEMI) (86).

Hemorrhage into the tunica media from VV has been 
suggested as a possible mechanism of SCAD (87) but only 
recently has OCT provided a suitable imaging tool to 
evaluate this (88). OCT was used to evaluate 9 consecutive 
patients with SCAD and 18 gender-matched control 
subjects with non-obstructive CAD at a median of 44 days 
after index presentation (89). Plaque volume was defined as 
intimal volume plus medial volume and divided by lesion 
length to provide an adjusted volume (cubic millimeters/
millimeter). Patients with SCAD demonstrated higher 
overall VV volume (0.47 vs. 0.19 mm3/mm, P<0.001) and 
almost a five-fold greater VV density than those with non-
obstructive CAD. These findings raise the possibility that 
extravasation of blood from proliferative adventitial VV 
may lead to the formation of microhematomas between the 
media and intima that could result in coronary dissection. 
Further studies are needed to determine the causal 
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Figure 3 Integrated OCT and NIRAF imaging of a TCFA. (A) Coronary angiogram of the left anterior descending artery; (B) NIRAF 
map identifying a focal region of elevated NIRAF in the ostial left anterior descending artery, and below, the three-dimensional cutaway 
rendering demonstrating the highest NIRAF spot appears focally within a lipid pool; (C,D,E) OCT and NIRAF cross sections from sites 
in the ostial left anterior descending artery revealing subclinical fibrous cap rupture. Key: *, guide-wire shadowing artifact; OCT showing 
white luminal thrombus (arrow), plaque rupture (R), thrombus (T). [Images adapted with permission from Ughi et al. (19)]. OCT, optical 
coherence tomography; NIRAF, near-infrared autofluorescence; TCFA, thin-cap fibroatheroma.

relationship between the VV and the pathogenesis of SCAD 
and intravascular imaging will provide invaluable insights.

Role of intravascular imaging in therapeutic 
modulation of atherosclerosis

The imaging techniques described above have also been 

used to evaluate established therapies for their ability to 
modulate coronary atherosclerosis (Table 1). The most 
significant body of work has employed serial IVUS 
imaging following cholesterol-lowering treatment with 
β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase 
inhibitors, or statins. Increasingly, new medical therapies, 
particularly those that target plaque inflammation, are also 

A

B

C D E

(Distal)

C-D-E

(Proximal) NIRAF Lipid Calcium
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being evaluated.

Targeting LDL cholesterol (LDL-C)

The correlation between lowering levels of LDL-C and 
reduction of MACCE rates is well established (106). 
Serial IVUS coronary imaging has demonstrated that 
lowering LDL-C with high intensity statin therapy 
reduces atherosclerotic PB. The REVERSAL (Reversal 
of Atherosclerosis with Aggressive Lipid Lowering) study 
compared moderate lipid-lowering with pravastatin 40 mg 
and intensive lipid-lowering with atorvastatin 80 mg for  
18 months (90). Baseline LDL-C levels (mean 3.9 mmol/L 
or 150.2 mg/dL) were reduced to 2.8 mmol/L (110 mg/dL)  
in the pravastatin group compared with 2 mmol/L  
(79 mg/dL) in the atorvastatin group (P<0.0001). The 
inflammatory biomarker C-reactive protein (CRP) 
decreased 5.2% with pravastatin and 36.4% with 
atorvastatin (P<0.001). For all IVUS endpoints, progression 
occurred in the moderate treatment arm, and PV was 
unchanged in the intensive arm. Direct relationships were 
shown between the degree of LDL-C lowering, slowing of 
disease progression and reduction of CRP (107).

Very high intensity  stat in therapy was further 
investigated to assess its ability to alter progression of 
PB in the ASTEROID (a study to evaluate the effect of 
rosuvastatin on intravascular ultrasound-derived coronary 
atheroma burden) trial (91). Three hundred and forty-
nine patients who received 40 mg daily rosuvastatin had 
baseline and 24-month IVUS examinations. Rosuvastatin 
therapy resulted in a mean reduction of LDL-C of 53% 
and an increase in high-density lipoprotein cholesterol 
(HDL-C) of 15%. Significant plaque regression was 
observed with a 6.8% median reduction in total atheroma 
volume (TAV). The SATURN (study of coronary atheroma 
by intravascular ultrasound: effect of rosuvastatin versus 
atorvastatin) trial was an extension of ASTEROID and 
compared rosuvastatin 40 mg/day directly to atorvastatin 
80 mg/day for 24 months (92). The rosuvastatin group 
achieved lower levels of LDL-C than the atorvastatin group 
[1.62 vs. 1.82 mmol/L (62.6 vs. 70.2 mg/dL), P<0.001], 
and higher levels of HDL-C [1.30 vs. 1.26 mmol/L (50.4 
vs. 48.6 mg/dL), P=0.01]. Despite these small differences 
in the post treatment lipid profiles, plaque regression was 
similar in both treatment arms, occurring in two thirds of 
participants. Treatment reduced plaque progression in all 
subgroups irrespective of baseline lipoprotein levels (108). 
Additional analysis of these IVUS-based studies have also 

revealed that statins stabilize atherosclerotic plaques and 
are pro-calcific regardless of net plaque change, with the 
greatest increase in calcium associated with higher intensity 
therapy (109).

Alternative imaging modalities have assessed the 
modifying effect of statin therapy on atherosclerotic plaque 
composition. Serial OCT of non-culprit lesions was used 
in 70 patients with unstable angina and dyslipidemia in the 
Japanese EASY-FIT study to investigate plaque stability. 
Patients were randomized to 20 or 5 mg of atorvastatin 
daily and imaging was performed at baseline and 1-year 
follow-up (93). Lower LDL-C levels were achieved in the 
higher dose group (69 vs. 78 mg/dL, P=0.039) with OCT 
suggesting a more stable plaque in this group, characterized 
by a significant increase in fibrous cap thickness of 69% 
compared to 17% (P<0.001). The increase in fibrous cap 
correlated with the decrease in LDL-C levels and grade of 
OCT measured macrophages.

Similar results were seen in a single center study that 
examined the effects of the addition of ezetimibe 10 mg daily 
to treatment with fluvastatin 30 mg daily. The reduction 
in LDL-C was significantly larger in the group receiving 
combination therapy (–34.0±32.0 vs. –8.8±17.4 mg/dL,  
P<0.001), and while OCT demonstrated a significant 
increase in fibrous cap thickness after 9 months of 
therapy in both groups, this was greater in those receiving 
combination therapy (110). In the HEAVEN study, 89 
patients with stable angina were randomized to aggressive 
lipid lowering therapy of atorvastatin 80 mg and ezetimibe 
10 mg daily or standard statin therapy over 12 months after 
which coronary arteries were examined by IVUS and VH-
IVUS (95). Although combination therapy resulted in an 
increased frequency of atherosclerotic regression, manifest 
as increased lumen volume and decreased percent atheroma 
volume (PAV) (40.5%) compared with standard therapy 
(14.9%) (P=0.007), VH-IVUS identified no difference 
between the two arms with respect to plaque composition. 
Both groups showed a shift to higher risk morphology 
during the treatment period with a decrease in fibrous and 
fibro-fatty tissue and an increase in necrotic core and dense 
calcification. This demonstrates that although aggressive 
LDL-C lowering therapy can result in plaque regression, it 
does not invariably stabilize plaque composition to eradicate 
atherothrombotic risk.

The YELLOW (Reduction in Yellow Plaque by 
Intensive Lipid Lowering Therapy) trial was an open 
labeled study that utilized NIRS and IVUS to compare 
the impact of short-term intensive statin therapy on 
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lipid content of atherosclerotic plaque (94). Imaging was 
conducted at baseline and on completion of 7 weeks of 
treatment with either rosuvastatin 40 mg daily or standard-
of-care lipid lowering therapy. Intensive therapy was 
associated with a larger mean reduction in LCBI4 mm max 
(LCBI at the 4 mm maximal segment) measured by NIRS 
[–149.1 (–210.9 to –42.9) vs. 2.4 (–36.1 to 44.7), P=0.01]. 
Importantly, the baseline LCBI was significantly greater in 
those randomized to the intensive treatment group. Despite 
significant LCBI reduction, neither arm demonstrated a 
difference in PB percentage measured by IVUS. In the 
subsequent YELLOW II (reduction in coronary yellow 
plaque, lipids and vascular inflammation by aggressive lipid 
lowering) study, 85 patients with stable symptomatic multi-
vessel CAD underwent PCI of a culprit lesion, followed by 
intracoronary multimodal imaging, including NIRS, IVUS 
and OCT, of an obstructive non-culprit lesion. All patients 
were given rosuvastatin daily for 8 to 12 weeks, when the 
non-culprit lesion was reimaged. The study demonstrated 
a reduction in TCFA prevalence from 20.0% to 7.1% 
(P=0.003) consistent with plaque stabilization (111).

More recently, the effect on plaque microstructure 
of alternative LDL-C lowering therapies has also been 
evaluated using intracoronary imaging. Proprotein 
convertase subtilisin kexin type 9 (PCSK9) reduces 
LDL receptor recycling to the hepatic surface, thereby 
limiting removal of LDL particles from the circulation  
(112-114). Monoclonal antibodies against PCSK9 reduce 
LDL-C (115). The GLAGOV (global assessment of 
plaque regression With a PCSK9 antibody as measured by 
intravascular ultrasound) trial randomized 968 moderate-
or-high dose statin-treated patients to PCSK9 inhibition 
with monthly evolocumab or placebo for 76 weeks. 
Compared with placebo, the evolocumab group achieved 
lower LDL-C levels (93.0 vs. 36.6 mg/dL, P<0.001). Serial 
IVUS revealed that PAV increased 0.05% with placebo and 
decreased 0.95% with evolocumab (P<0.001). Furthermore, 
evolocumab was associated with a greater reduction in 
normalized TAV (–0.9 vs. 5.8 mm3, P<0.001) and induced 
plaque regression in a greater percentage of patients  
(47.3 vs. 64.3%, P<0.001 for PAV and 48.9 vs. 61.5%, 
P<0.001 for TAV). The failure of approximately one-third of 
evolocumab treated patients to display atheroma regression 
despite achieving very low LDL-C levels suggests that other 
factors are also contributing to disease progression (96).  
Further IVUS analysis of GLAGOV patients revealed that the 
addition of evolocumab did not produce differential changes 
in plaque composition compared with statin monotherapy. 

In particular, no differences were observed between the 
evolocumab and placebo groups in changes in calcium 
(1.0±0.3 vs. 0.6±0.3 mm3, P=0.49), fibrous (–3.0±0.6 vs. 
–2.4±0.6 mm3, P=0.49), fibrofatty (–5.0±1.0 vs. –3.0±1.0 mm3,  
P=0.49) and necrotic (–0.6±0.5 vs. –0.1±0.5 mm3, P=0.49) 
volumes (97).

Collectively, these predominantly IVUS-based studies 
demonstrate a direct association between the extent of 
LDL-C lowering and disease progression, irrespective of 
baseline lipoprotein levels (92). Over a 12- to 18-month 
period, plaques typically stop progressing at LDL-C levels 
below 1.8 mmol/L, and at levels below 1.3 mmol/L show 
signs of regression with significant reduction in TAV and 
PAV. Furthermore, some of these studies also demonstrate 
the beneficial effect of LDL-C lowering on plaque stability, 
with an increase in fibrous cap thickness, reduction in 
TCFA prevalence and mean reduction in LCBI4 mm, 
demonstrable within 12 months of treatment initiation.

Targeting HDL cholesterol (HDL-C)

Evidence suggests that HDL-C plays a protective role 
in atherosclerosis. Population studies demonstrate an 
inverse relationship between HDL-C and prospective 
cardiovascular events (116). Lower levels of HDL-C 
correlate with increased cardiovascular events despite 
very low LDL-C levels (117). This has encouraged the 
development of therapies targeting HDL-C including the 
infusion of delipidated HDL which in both preclinical 
and clinical trials has been identified to have pleiotropic 
beneficial effects on atherosclerotic burden, including 
via promotion of cholesterol efflux (118) and improved 
endothelial cell function (119).

Niacin remains a practical and effective treatment to 
increase low HDL-C levels in clinical practice. A small 
study utilizing serial IVUS imaging compared the effects 
of a combination of niacin and simvastatin to simvastatin 
monotherapy on plaque regression (120). There were no 
intergroup differences for normalized TAV or PAV at baseline 
or on completion of nine months of therapy. However, the 
degree of change in both parameters was greater in the 
combination compared to the monotherapy arm (ΔTAV: 
–21.6±10.7 vs. 5.5±42.2 mm3, P=0.024; ΔPAV: –1.2%±2.5% 
vs. –0.6%±5%, P=0.047). Whether this translates to clinical 
benefit has been questioned, as a recent trial showed no 
additive reduction in cardiovascular events when extended-
release niacin was used in statin-treated patients (121).

The potential benefit of infusing lipid-deplete forms of 
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HDL to modify coronary plaque has been investigated in 
multiple IVUS studies (98,99,122,123). In the first of these, 
intravenous infusions of reconstituted HDL containing 
apoA-1 Milano (AIM) or placebo (saline) were administered 
to patients post-ACS (98). IVUS imaging was conducted 
at baseline and after 5 weeks of treatment, and rapid 
regression of atherosclerotic plaque was demonstrated in 
patient’s receiving AIM infusions. Interestingly, this was 
not associated with a change in lumen size, supporting the 
concept that plaque regression is associated with reverse 
remodeling of the arterial wall (122). In the subsequent 
ERASE (The Effect of rHDL on Atherosclerosis Safety 
and Efficacy) trial, four weekly infusions of HDL particles 
containing wild-type apoA-1 were not associated with 
a significant difference in coronary atheroma volume 
evaluated by IVUS, when compared to saline placebo (99).

More recently, an engineered HDL-mimetic comprised 
of recombinant human apoA-I and phospholipids and 
designed to mimic the benefits of nascent pre-β HDL 
(Cerenis Therapeutics, Labège, France, CER-001), was 
administered in the Chi-Square (can HDL infusions 
significantly quicken atherosclerosis regression?) trial. 
Patients were assigned three different doses of CER-001 or 
saline administered over 6 weekly infusions. CER-001 failed 
to significantly regress coronary atherosclerosis on IVUS 
when compared to placebo (100). In the subsequent CER-
001 Atherosclerosis Regression Acute Coronary Syndrome 
Trial (CARAT), 301 post-ACS patients were randomized 
to receive a series of 10 infusions of CER-001 at a dose of 
3 mg/kg or placebo with IVUS used to assess the primary 
endpoint of median change in PAV. There was no difference 
between CER-001 treated and placebo-treated patients 
(–0.09% vs. –0.41%, P=0.15) (101).

The development of cholesteryl ester transfer protein 
(CETP) inhibitors has also impacted the HDL field. As 
CETP promotes the transfer of cholesteryl esters from 
HDL to lipoproteins, including LDL and VLDL particles, 
inhibition of CETP results in raised HDL-C levels (124). 
This, together with the observation that populations with 
a high prevalence of low CETP activity, accompanied by 
high HDL-C levels, have fewer cardiovascular events has 
driven clinical interest in this drug group (125). The effect 
of the CETP inhibitor, torcetrapib, on atherosclerosis has 
been studied in several imaging trials. The ILLUSTRATE 
(Investigation of Lipid Level Management Using Coronary 
Ultrasound to Assess Reduction of Atherosclerosis by 
CETP Inhibition and HDL Elevation) study utilized 
IVUS to evaluate the effect of torcetrapib on atheroma 

progression in patients treated with atorvastatin for an 
LDL-C goal of 100 g/dL. Torcetrapib-treated patients 
showed a 61% relative increase in HDL-C concentrations 
and a 20% relative decrease in LDL-C levels when 
compared to atorvastatin monotherapy. Despite this, 
torcetrapib did not result in slowing of disease progression 
or promotion of disease regression, with no significant 
difference demonstrated in the change in atheroma volume 
within the most diseased vessel segment (126). However, 
a post-hoc analysis of ILLUSTRATE revealed an inverse 
relationship between the degree of HDL-C increase in 
torcetrapib-treated patients and the rate of atherosclerotic 
progression, with the highest HDL-C levels associated with 
plaque regression (102). In any case, torcetrapib’s toxicity 
profile has prevented its uptake into clinical practice (127).

In summary, clinical outcome studies have mostly failed 
to demonstrate any tangible reduction in cardiovascular risk 
with HDL-C raising therapies. Furthermore, approaches 
promoting HDL functionality as opposed to its quantity 
have been equally disappointing. It follows that imaging-
based studies have generally demonstrated inconsistent, 
non-significant trends in plaque regression, determined by 
TAV and PAV, and no clear benefit on plaque stabilization 
with agents that target HDL. Despite these disappointing 
results, the development of HDL infusion programs 
continues and alternative approaches to improve HDL 
functionality, such as up-regulating endogenous expression 
of apoA-I to generate functional, newly formed HDL 
particles, are being explored (128). Alternating macrophage 
polarization from a pro-inflammatory to anti-inflammatory 
phenotype may provide a further opportunity for HDL 
therapies to modify plaque favorably. The use of hybrid 
atherosclerotic imaging techniques with the ability to 
distinguish individual plaque components accurately will 
help to evaluate these therapies.

Targeting triglycerides

Another therapeutic target is triglyceride-rich lipoprotein 
particles that have potent atherogenic effects (129). Despite 
strong evidence that elevated triglyceride levels predict patients 
at increased risk of vascular risk (130), there is so far a paucity 
of information on the ability of triglyceride-lowering drugs to 
modulate coronary atheroma in human patients.

Targeting diabetes

It is predicted that type 2 diabetes mellitus will become 
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the leading cause of mortality worldwide by 2020 (131). 
Patients with diabetes have a substantially increased risk 
of adverse cardiovascular events (132) and suffer less 
favorable outcomes post-MI (133) and following coronary 
interventions (134). Patients with diabetes exhibit greater 
PB, increased atherosclerotic disease progression in the 
arterial wall and more frequent impaired compensatory 
remodeling leading to adverse plaque events than patients 
without diabetes (135). In addition, patients with diabetes 
have generally demonstrated greater increases in atheroma 
volume despite aggressive lowering of LDL-C levels (135). 
However, analysis of the IVUS-based SATURN trial 
demonstrated similar regression of atherosclerotic plaque 
independent of diabetes status, when on-treatment LDL-C 
levels were ≤70 mg/dL (–1.09%±0.16% vs. –1.24%±0.16%, 
P=0.50). In contrast, disease regression was greater in the 
patients without diabetes when achieved LDL-C levels were 
>70 mg/dL (–0.31%±0.23% vs. –1.01%±0.21%, P=0.03), 
highlighting the importance of tight lipid control in this 
context (136).

Peroxisome proliferation-activated receptor gamma 
(PPARγ) agonists are utilized in some patients with 
diabetes, acting as insulin sensitizers. PPARγ activation 
may have multiple beneficial effects on atherogenesis, 
including reducing inflammation, improving endothelial 
function, and inhibiting apoptosis and oxidative stress. 
The PERISCOPE (pioglitazone effect on regression of 
intravascular sonographic coronary obstruction prospective 
evaluation) study compared pioglitazone, a PPARγ agonist, 
and glimepiride, a sulfonylurea, in diabetic patients (103).  
Coronary atheroma was assessed with IVUS at baseline 
and after completing 18 months of therapy. PAV increased 
0.73% (95% CI, 0.33% to 1.12%) with glimepiride 
and decreased 0.16% (95% CI, –0.57% to 0.25%) with 
pioglitazone (P=0.002). Pioglitazone treatment was 
associated with a significant HDL-C level increase (5.7 
vs. 0.9 mg/dL, P<0.001) and a median triglyceride level 
decrease (–16.3 vs. 3.3 mg/dL, P<0.001), along with 
improvement in glycemic control. Further analysis 
discovered that raising the HDL-C was the strongest 
independent predictor of the capability of pioglitazone to 
slow plaque progression (137).

Although the clinical cardiovascular benefits of sodium-
glucose co-transporter-2 inhibitors (138-140) and glucagon-
like peptide-1 receptor agonists (141-143) have been 
well demonstrated in patients with diabetes, the effect of 
these agents on coronary atheroma is yet to be evaluated 
with intracoronary imaging. Meanwhile, the incremental 

benefit of achieving optimal control of multiple risk factors 
in patients with diabetes was demonstrated in an IVUS-
based study which showed that increasing the number of 
risk factors meeting treatment targets was associated with 
slowing of progression of both PAV (P=0.03) and TAV 
(P<0.001) (144).

Atherosclerotic plaques in patients with diabetes have 
more advanced risk profiles than plaques from patients 
without diabetes. These IVUS-based studies demonstrate 
that these differences will continue to progress unless 
LDL-C levels below 1.8 mmol/L (or 70 mg/dL) are 
achieved, and co-existent cardiovascular risk factors are 
treated optimally. Future imaging studies will help provide 
a mechanistic understanding of the differential effects that 
lipid-lowering agents have on plaque composition and 
stability in diabetic compared to non-diabetic patients (96), 
as well as the plaque-modifying properties of different 
classes of diabetic drugs.

Blood pressure lowering

Hypertension remains a key risk factor in the development 
of cardiovascular disease. Lowering of blood pressure in 
hypertensive patients provides similar relative protection 
at all levels of baseline cardiovascular risk but progressive 
greater absolute risk reduction as baseline risk increases (145).  
Although the evidence for clinical benefit in blood pressure-
lowering therapies is well established, the benefit of anti-
hypertensive treatments on atherosclerotic coronary 
disease progression is not. The CAMELOT (comparison 
of amlodipine versus enalapril to limit occurrences of 
thrombosis) study evaluated the effect of amlodipine, 
enalapril and placebo on clinical event rates in patients with 
established CAD and well controlled blood pressure (104).  
Its  IVUS substudy demonstrated that amlodipine 
pharmacotherapy both slowed atherosclerotic disease 
progression and lowered cardiovascular event rates. A trend 
towards atheroma regression was seen in patients who 
had attained a systolic BP <120 mmHg, implying a direct 
relationship between systolic blood pressure control and 
plaque progression (146). Despite pre-clinical data showing 
that activation of the renin-angiotensin-aldosterone 
system is atherogenic (147) and that its inhibition may 
be anti-atherosclerotic (148), this has not been supported 
by the limited evidence available from clinical imaging 
studies. Notably, the AQUARIUS (Aliskiren quantitative 
atherosclerosis regression intravascular ultrasound study) 
study failed to show any effect of the direct renin inhibitor, 
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aliskerin, on IVUS-based metrics of plaque progression in 
patients with prehypertension (105).

Targeting lifestyle

Madssen et al. investigated the effects of aerobic interval 
training (AIT) compared to moderate continuous training 
(MCT) on coronary atherosclerotic disease in patients 
with significant CAD and recent intracoronary stent 
implantation (149). Patients were randomized to AIT or 
MCT for 12 weeks after PCI. Grayscale and VH-IVUS 
were performed at baseline and follow-up. Both modes 
of exercise were associated with a 10.7% decrease in PB, 
and similar reductions in necrotic core size. To date, the 
effects of other lifestyle interventions, including smoking 
cessation and weight reduction, have not been investigated 
comprehensively.

Targeting inflammation

The central role that inflammation plays in all stages of 
atherosclerosis has led to increasing evaluation of both new 
and repurposed anti-inflammatory agents for the treatment 
of CAD (150). The CANTOS (canakinumab anti-
inflammatory thrombosis outcomes study) trial provided 
a major stimulus in the field by showing a reduction 
in composite MACE in post-MI patients with residual 
inflammatory risk (defined by high sensitivity CRP >2 mg/L) 
who were treated with the anti-IL-1β monoclonal antibody, 
canakinumab (151). Although the CIRT (cardiovascular 
inflammation reduction trial) trial failed to achieve similar 
benefits from low-dose methotrexate (152), the recent 
COLCOT (colchicine cardiovascular outcomes trial) study 
demonstrated that repurposing of low-dose colchicine  
(0.5 mg/day) led to a 23% MACE reduction when initiated 
in addition to standard antiplatelet and statin therapy 
within 30 days of an MI (153). The ongoing OCT-based 
COCOMO-ACS study (ACTRN12618000809235) will 
inform on whether colchicine modifies coronary PB and 
composition to help understand the mechanistic basis for 
this striking result.

Ongoing therapeutic modulation coronary imaging studies

Multiple trials utilizing vessel wall-based imaging 
modalities to evaluate the responsiveness to established and 
experimental therapeutic interventions are ongoing (Table 2).  
Hybrid modalities are also increasingly being used to 

merge structural imaging with targeting of more specific 
molecular factors within plaque and may further assist in 
our understanding of the factors driving the natural history 
of disease, risk stratification and evaluation of therapies.

Role of intravascular imaging in PCI

Coronary stent restenosis and thrombosis

Coronary artery stents are used in the vast majority of 
patients who undergo PCI, but vessel patency may not be 
maintained due to either restenosis or stent thrombosis. 
In-stent restenosis (ISR) is the result of arterial damage 
with resultant neointimal proliferation which occurs in 
association with macrophage accumulation, smooth muscle 
cell hyperplasia and extensive neovascularization (154). 
The rate of ISR has been reported to be between 3% 
and 20%, depending on stent-type, duration of follow-
up, patient comorbidities and the complexity of stented 
lesions (155). Stent thrombosis is a frequent life-threatening 
complication that can occur acutely (within 24 hours), 
sub-acutely (within 30 days), or as late as 1 year (late) or 
more (very late) after stent placement and can be can be a 
potentially life-threatening complication (156,157). Most 
cases occur within the first 30 days irrespective of stent  
type (158). Registry data indicate that the cumulative 
incidence of stent thrombosis with drug-eluting stents 
(DES) at 1 year is approximately 0.4% to 0.8% (159). In 
clinical trial populations, the risk has been estimated at 0.2% 
to 0.3% per year after the first year for at least 5 years (160). 
Pathologic studies suggest that very late stent thrombosis 
(VLST) is due to delayed neointimal coverage and ongoing 
vessel inflammation (161,162) and that the presence of 
greater than 30% of uncovered struts is highly predictive 
of stent thrombosis following DES implantation (161).  
Compared with paclitxel-eluting stents (PES), sirolimus-
eluting stents (SES), or zotarolimus-eluting stents (ZES), 
everolimus-eluting stents (EES) significantly reduce the 
risk of stent thrombosis, suggesting they facilitate arterial 
healing (158). The apposition of DES struts to the arterial 
wall is also correlated to strut coverage, with malapposition 
resulting in delayed coverage compared with well-
apposed struts (163). Neoatherosclerosis, first described in 
postmortem studies, is a recently recognized phenomenon 
in which LRP develop within pre-existing stents, and 
represents an emerging cause of VLST (164-166). Coronary 
imaging modalities which are vessel wall-based and have the 
ability to determine stent strut coverage, strut apposition 
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and detect LRP have an important part to play in clinical 
practice, with both IVUS and OCT used for this purpose.

In an early case-controlled study, Guagliumi et al. 
investigated 54 patients, including 18 with DES late stent 
thrombosis (LST) undergoing emergency PCI and 36 
matched DES control subjects undergoing repeat OCT 
and IVUS three or more years after stent insertion (167). In 
patients with LST, OCT demonstrated a higher percentage 
of uncovered (12.27% vs. 4.14%, P<0.001) and malapposed 
struts (4.6% vs. 1.81%, P=0.028) and IVUS demonstrated 
an increase in positive remodeling (mean vessel cross-
section area 19.4±5.8 vs. 15.1±4.6 mm2, P=0.003). Stent 
expansion was comparable in the two groups. OCT 
determined percentage of uncovered stent struts and IVUS 
determined remodeling index were found to be independent 
predictors of LST. Due to its superior axial and lateral 
resolution, OCT has been found to be superior to IVUS in 
terms of both detecting stent expansion and strut apposition 
at deployment (168) and determining the prevalence of 
subsequent stent coverage (169).

Studies have utilized serial OCT to evaluate stent 
strut coverage and strut malapposition for different stent 
types, different time-points post stent deployment, and 
for different clinical indications. The OCT substudy 
of the HORIZONS-AMI (harmonizing outcomes with 
revascularization and stents in acute myocardial infarction) 
trial compared the TAXUS PES to an otherwise identical 
Express bare metal stent (BMS) in 118 consecutive 
patients with STEMI (170). The PES reduced neointimal 
hyperplasia but had an increased incidence of uncovered 
and malapposed stent struts compared with the BMS  
13 months following stent implantation. This phenomenon 
is seen for most DES which suppress excessive neointima 
formation at a cost of delaying stent strut healing. The 
OCT substudy of the LEADERS (Limus eluted from a 
durable versus erodable stent coating) trial found that stent 
coverage at a mean follow up of nine-months was more 
complete in patients after deployment of biodegradable 
polymer-coated, biolimus-eluting stents (BES) in 
comparison to the durable polymer-coated SES but that 
the coverage was similar after 24 months (1.5% vs. 1.8% 
uncovered stent struts) (171,172).

The OCT substudy of the RESOLUTE Allcomers 
(Randomised, Two-arm, Non-inferiority Study Comparing 
Endeavor-Resolute  Stent  With  Abbot  Xience-V 
Stent) trial demonstrated no significant differences in 
either stent strut tissue coverage and malapposition at 

13-month follow-up between the hydrophilic polymer-
coated ZES (Resolute) and the fluropolymer-coated EES 
(Xience) (7.4% vs. 5.8% uncovered stent struts) (173). 
Intracoronary OCT imaging trials have demonstrated a 
higher rate of uncovered and malapposed stent struts in 
DES when implanted during a STEMI in comparison to 
patients with stable CAD (174-176).

OCT may also potentially assist in determining the 
different tissues covering stent struts, notably fibrin 
coverage with thrombotic material as opposed to neointimal 
coverage, with a lower OCT signal intensity typically 
observed for fibrin-covered stent struts (177,178). The 
presence of OCT-determined thin rim coverage likely to 
represent fibrin was reported in a high percentage of stent 
struts 3–7 days after successful use of cobalt chromium 
and first generation DES, with potential implications for 
increased stent thrombosis (179).

NIRS has been validated for the purpose of LRP 
detection in native coronary vessels (180) and has been 
proposed as a method to demonstrate neoatherosclerosis 
within pre-existing coronary stents. This has important 
clinical implications as neoatherosclerosis and rupture 
can result in VLST. Madder et al.  used NIRS and 
IVUS in a cohort with pre-existing stents (5.5±4 years 
earlier) and a control group of freshly implanted stents. 
Although NIRS detected LRP signal within 20 of 
60 pre-existing stents, 7 of these had no evidence of 
neointimal tissue on IVUS. Moreover, NIRS findings 
in pre-existing stents were indistinguishable from those 
of freshly implanted stents with regards to both LCBI 
and LCBI4 mm. Therefore, the detection of LRP in a 
pre-existing stent by NIRS alone was determined to be 
unreliable evidence of neoatherosclerosis as the lipid 
signal may originate from fibroatheroma underlying the 
stent. Accurate diagnosis of neoatherosclerosis within 
stents remains a challenge for current intracoronary 
imaging modalities.

All considered, these studies demonstrate that IVUS- and 
OCT-based intracoronary imaging can provide information 
about the completeness and nature of stent strut coverage 
which can vary between stent types and differing drug-
eluting platforms, and the extent of stent malapposition. 
These serve as surrogate safety endpoints which can predict 
real clinical outcomes, such as LST and restenosis. The 
studies also highlight the failure of current vessel-wall based 
imaging modalities to accurately detect neoatherosclerosis, 
a potential cause of VLST.
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Determining optimal duration of dual antiplatelet therapy 
(DAPT)

Trials with clinical endpoints have so far supported shorter 
duration of DAPT with new generation DES (181,182). 
Intracoronary imaging may theoretically help to guide the 
optimal duration of DAPT for individual patients. The 
DETECT-OCT (determination of the duration of dual 
antiplatelet therapy by the degree of the coverage of the 
struts on optical coherence tomography from the randomized 
comparison between everolimus-eluting stents versus biolimus 
A9-eluting stents) trial explored the feasibility of stopping 
DAPT early based on the extent of strut coverage evaluated 
by 3-month OCT in 894 patients undergoing PCI with DES 
(183). In a 2-by-2 factorial design, patients were randomized 
to EES or BES and to OCT- or angiographically-guided 
stent implantation. Despite variance in polymer composition, 
strut thickness and antiproliferative drug pharmacokinetics, 
no significant difference in strut coverage was identified 
between the groups (median percentage of uncovered struts, 
8.9% and 8.2%, P=0.69). However, OCT-guided stent 
deployment improved strut coverage at three months (median 
percentage of uncovered struts was 7.5% in the OCT-guided 
group and 9.9% in the angiographically-guided group, 
P=0.009). Favorable early strut coverage (defined as ≤6% 
uncovered) was observed in 41.1% of patients and resulted in 
discontinuation of clopidogrel. Subsequently, at 12 months 
the composite of cardiac death, MI, stent thrombosis and 
major bleeding was not significantly different between those 
who received 3 and 12 months of DAPT, as guided by OCT 
(0.3% vs. 0.2%, P=0.80).

In the RevElution first-in-human trial, 100 patients with 
de novo coronary lesions 2.25–3.50 mm in diameter and 
≤27 mm in length were randomized to either a polymer-
free drug filled stent or a ZES (Resolute) with IVUS-based 
assessment at nine or 24 months, and OCT follow-up in a 
subset of 30 patients at multiple time periods. The primary 
endpoint was angiographic in-stent late lumen loss at nine 
months compared with historical data from the Resolute 
stent as a control. The study showed that the polymer-free 
drug filled stent was non-inferior to Resolute for late lumen 
loss (0.26±0.28 vs. 0.36±0.52 mm). Median stent strut 
coverage by OCT was 91.4%, 95.6%, and 99.1% at one, 
three and nine months, respectively, potentially allowing for 
a shorter duration of DAPT (184).

Summary and future perspectives

The use of intracoronary imaging modalities has greatly 

advanced our understanding of the full extent, composition 
and rate of progression of atherosclerotic coronary plaques. 
They have helped determine the characteristics of plaque 
that make it vulnerable and predispose patients to increased 
risk of future atherothrombotic events. Further, studies 
using these modalities serially have provided helpful 
mechanistic information about the responsiveness of 
coronary atherosclerosis to established and experimental 
pharmacotherapies and lifestyle interventions. Some of 
these strategies, most notably LDL-C lowering drugs, 
have clearly been shown to not only slow plaque growth, 
but also induce plaque regression and stabilization at high 
doses. Meanwhile, the anti-atherosclerotic properties of 
other treatments (e.g., HDL-raising approaches) have been 
less conclusive, commensurate with the lack of benefit also 
seen in clinical outcome trials. As new therapies are tested 
to address the unacceptable residual burden associated 
with CAD, intracoronary imaging will continue to play 
an important role in evaluating their effectiveness against 
atherosclerosis, to support or caution against their uptake 
into clinical practice. As these imaging modalities become 
more advanced to combine anatomical with biological 
information, they will also help to identify new cellular 
and molecular targets for anti-atherosclerotic agents. 
This should also lead to better targeting of pathological 
substrates in plaque that are not specifically addressed by 
current treatments, such as plaque neovascularization, 
hemorrhage and erosion.

Information from the use of these modalities has also 
served to corroborate pathological findings relating to 
coronary stent healing and risk of thrombosis. This has 
already impacted significantly on clinical practice with 
regards to stent choice, vigilance required to ensure optimal 
stent strut apposition and, increasingly, determination of 
the optimal duration for DAPT post-stent deployment. 
The opportunity exists to use these same modalities to 
evaluate new pharmacotherapies to promote early and more 
complete strut coverage with neointima rather than fibrin 
and to prevent LRP formation within stents to further 
reduce the risk of stent thrombosis.

Moving forward, coronary imaging studies using 
vessel wall-based techniques may also provide insight 
into poorly understood but frequently encountered CAD 
processes. These include non-atherosclerotic SCAD, 
myocardial infarction with non-obstructive coronary disease 
(MINOCA), and aggressive atherosclerotic CAD that 
progresses despite good control of traditional risk factors. 
Ultimately, the goal should be for intracoronary imaging to 
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be used safely, efficiently and effectively in these and other 
settings, to facilitate personalized diagnostic, prognostic and 
therapeutic decision making on the way to delivering better 
patient outcomes.
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