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Introduction

Coronary artery disease (CAD) remains a major cause 
of morbidity and mortality worldwide. Many patients 
with obstructive CAD will experience symptoms of 
myocardial ischaemia and a reliable assessment of stenosis 
severity is required to ensure clinicians make appropriate 
revascularisation decisions. Traditionally, invasive coronary 
angiography has been the gold standard investigation to 

assess severity and extent of CAD. However, angiography 
is limited as it is a two-dimensional representation of a 
more complex three-dimensional structure. Interpretation 
of images can also be hampered by vessel foreshortening or 
overlay, along with challenges in reliably assessing stenosis 
severity in highly eccentric lesions. The fallibility of stenosis 
severity on angiography has been documented in previous 
studies, which demonstrate an inter-observer variance 
in diameter stenosis of 15–45%. Thus, visual estimation 
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of stenosis severity lacks precision with up to 30% of 
angiographic assessments found to be erroneous (1). While 
some of this subjectivity can be addressed through use of 
quantitative coronary angiography (QCA) software, there 
remains issues with spatial and temporal resolution along 
with an inability to account for extraluminal abnormalities, 
marked vessel tortuosity and lesion asymmetry (2). Three 
dimensional QCA has gone some way in addressing these 
concerns allowing fusion of two or more angiographic 
views. However, even 3D QCA cannot overcome the 
limitation of angiographic resolution (3). 

Given these inherent difficulties in accurate stenosis 
assessment on angiography, patients often fall into 
a category termed ‘intermediate’ stenosis severity. 
Intermediate stenosis is defined as an angiographic 
stenosis of between 30–70% and presents a distinct clinical 
challenge with uncertainty in regards to optimal assessment 
and management strategy (4). Although its prevalence in the 
general population is not well known, registry data suggests 
it may be present in up to 25% of patients undergoing 
coronary angiography (5). 

Invasive physiological assessment is recognized as the 
optimal method for assessment of intermediate angiographic 
lesions. Myocardial fractional flow reserve (FFR) is defined 
as the ratio between maximum coronary blood flow in a 
stenotic artery compared with maximum blood flow in 
the theoretical absence of stenosis. This assessment is 
undertaken during the conditions of maximal hyperaemia, 
to ensure the effects of the coronary microcirculation are 
minimised (6). Pressure derived FFR is the most commonly 
utilised invasive tool and has been found to be superior to 
angiography when used to guide revascularization strategy 
(7,8). Recent data also now support the role of hyperaemic-
free pressure derived indices, such as the instantaneous 
wave-free ratio (iFR) (9,10). Both physiological approaches 
are supported by current European Society of Cardiology 
(ESC) guidelines on myocardial revascularization suggesting 
that, when evidence of ischaemia is not readily available, 
FFR or iFR should be utilized to assess the haemodynamic 
significance of intermediate grade coronary stenosis (11). 

More recently, there has also been the development of 
imaging based technology that provides lesion-specific 
physiological measurements without the need for guidewire-
based technology. The most well investigated method, 
termed Quantitative Flow Ratio (QFR), has demonstrated 
good diagnostic accuracy when compared to invasive indices. 
QFR utilises an image-based virtual FFR index, computed 
by three-dimesional QCA combined with coronary flow 

velocity estimated by thrombolysis in myocardial infarction 
(TIMI) frame count (12). In a series of 265 patients 
assessing diagnostic performance of QFR, there was strong 
correlation with both FFR (r=0.863, P<0.001) and iFR 
(r=0.740, P<0.001) producing a diagnostic accuracy of 90.8% 
and 81.3% (P<0.001), respectively (13). Despite these initial 
encouraging results, the uptake of QFR remains limited due 
to time constraints of calculating results in real-time, along 
with cost issues relating to software and licensing.

However, pressure wire assessment of intermediate lesions 
is not without its limitations and/or contraindications. 
Certain patient and lesion specific factors may decrease 
the efficacy of FFR and/or iFR and therefore physiological 
assessment may not be suitable in all patients. Patient 
specific characteristics may include; patient contraindication 
to adenosine (e.g., profound bradycardia), concurrent or 
recent ischaemia, significant left ventricular hypertrophy, 
severe aortic valve stenosis and situations where maximal 
hyperaemia (in the case of FFR) cannot be achieved due to 
significant microvascular impairment. In these scenarios, 
FFR may over- or underestimate lesion-specific ischaemia 
and may not be as reliable in guiding revascularization (14). 
Lesion specific features may also hamper physiological 
assessment including aorto-ostial, left main and tandem 
lesions along with segments of diffuse disease (15). These 
specific patient/lesion subsets may benefit from assessment 
with the use of intravascular imaging, chiefly intravascular 
ultrasound (IVUS) or optical coherence tomography (OCT). 
This review will therefore review the evidence and discuss 
the role of intravascular imaging in the assessment of 
intermediate coronary artery lesions.

Basic principles of IVUS

Intravascular ultrasound makes use of a miniaturized 
piezoelectric transducer mounted to a catheter tip to produce 
ultrasound signals, enabling quantitative assessment of the 
vessel wall and intimal atherosclerotic lesions. IVUS is 
now widely utilised as an adjunct to coronary angiography, 
allowing clinicians to better identify and characterize plaque 
morphology, measure reference luminal dimensions and 
optimize stent size, placement and deployment (16,17). 
Several manufacturers provide IVUS systems globally, 
enabling the majority of catheterization laboratories to have 
reliable access to the technology. The capabilities of IVUS 
continue to evolve, with improving resolution by higher 
acoustic frequency (up to 60 MHz for the opticross HD) 
and increasing pullback speeds; providing more accurate 
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and rapid lesion assessment. Several post-processing 
mathematical methods have also been developed to improve 
characterization of plaque and tissue morphology above that 
of standard grey-scale IVUS imaging, including iMAP-IVUS, 
virtual-histology (VH-IVUS) and integrated-backscatter (IB-
IVUS) (18,19). Further innovations have included integration 
of other intravascular imaging technologies such as infrared, 
fluorescent spectroscopy, or photoacoustic imaging with 
IVUS to better assess lesions for markers of vulnerability 
such as fibrous cap thickness and plaque composition (20). 
These multi-modal catheters are currently limited in their 
commercial availability, as they are yet to be proven to 
provide significant additional clinical benefit to patient 
management beyond grayscale IVUS alone.

Clinical outcomes of IVUS-guided PCI

Several large meta-analyses investigating the clinical 
benefits of IVUS-guided PCI with bare metal- (BMS) and 
drug eluting stents (DES) have been reported, with general 
consensus that IVUS improves patient outcomes (21,22). 
Focusing on DES, meta-analyses of RCTs and observational 
studies investigating IVUS-guided PCI have reported 
significant reductions in all-cause and cardiac death, target 
lesion revascularization (TLR), myocardial infarction 
(MI), and stent thrombosis (ST) (21,23,24); which has 
been confirmed at patient-level analysis (25). In complex 
lesions, IVUS reduced MACE and TLR with no effect 
on death or ST (26). These analyses however vary in their 
inclusion/exclusion criteria, with some limited to RCTs and 
others including observational studies, increasing the risk 
of confounding factors and treatment-selection bias. This 
was highlighted by Buccheri et al. who found that when 
their analysis was limited to only RCTs, IVUS-associated 
reduction in all-cause death was lost (23). Nevertheless, 
there is increasing consensus that IVUS-guided PCI 
improves clinical outcomes and now features in the 
American College of Cardiology (ACC) and ESC guidelines 
for guiding treatment of unprotected left-main coronary 
artery (LMCA) lesions (Class IIa, level B evidence), and 
is indicated for non-LMCA lesions of angiographically 
intermediate stenosis by the ACC guidelines (Class IIb, 
level B evidence) (27,28).

IVUS assessment of LMCA disease

LMCA disease is particularly challenging to accurately 
assess on angiography, as the arterial segment is often 

short, calcified and has disease that frequently involves the 
bifurcation. Unsurprisingly, it is known that there is high 
interobserver variability and low (41% to 59%) agreement 
when assessing angiographic lesion severity at this particular 
location (29,30). Given the critical importance of the 
LMCA to the coronary circulation and consequently its 
high prognostic value, accurate lesion assessment is crucial 
in guiding clinical management. 

IVUS has been widely used in the assessment of 
intermediate LMCA lesions for many years. Indeed, IVUS-
derived minimal lumen dimension is known to be a strong 
predictor of MACE (31). Numerous studies have sought to 
identify a standardized IVUS-derived measure that can be 
used to assist in guiding therapy, with the minimal lumen 
area (MLA) receiving the greatest interest (Figure 1). A 
wide range of MLA cut-off values have been proposed 
(between 4.5 and 7.5 mm2) to guide revascularisation versus 
medical management, based on the ability to correlate 
significantly with an FFR of <0.8 (32-36). The MLA 
cut-off of 6 mm2 is often used as the standard to defer 
revascularisation, as this value was validated in the largest 
prospective multicentre (LITRO) study to date of 354 
patients from 22 centres across Spain. Utilising IVUS, de 
la Torre Hernandez et al. found no significant difference 
in either cardiac-death (94.5% vs. 97.7%, P=0.5) or event-
free survival (80.6% vs. 87.3%, P=0.3) between those who 
underwent revascularisation (MLA <6 mm2, n=179) or 
in those is which it was deferred (MLA ≥6 mm2, n=186) 
after 2 years (34). Of the 179 deferred patients, just 8 
required revascularisation and this was predominantly due 
to stable angina, with no significant clinical, angiographic 
or ultrasonographic differences from those not requiring 
revascularisation. This MLA cut-off is supported by a prior 
study that identified an MLA cut-off of 5.9 mm2 correlated 
significantly with FFR <0.75 in 55 patients with moderate 
LMCA stenosis, with 93% sensitivity and 94% specificity 
(Table 1) (32). Opinion however does vary. The Mayo 
Clinic (USA) suggested a higher MLA cut-off value of  
7.5 mm2, derived from the mean – 2 standard deviations of 
MLA from a cohort of 121 patients with angiographically 
normal/minimally diseased LMCA (33). Subsequent long-
term follow-up of 214 patients with intermediate LMCA 
lesions at 3.3±2.0 years revealed no significant difference in 
MACE (TVR, MI, death) between those that underwent 
revascularization (n=83) or were deferred (n=131) using an 
MLA cut-off of 7.5 mm2 alone (33). 

Smaller MLA cut-off values have been suggested based 
on studies from South Korea, in which 4.5–4.8 mm2 
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correlated significantly with FFR <0.8 in two studies, and 
an MLA of 4.1 mm2 correlated more significantly with 
FFR<0.75 (Table 1) (35,36). Moreover, the same study 
found that among 40 lesions with MLA <6.0 mm2, 38% 
had FFR ≥0.8, and 58% had FFR ≥0.75 (35). These studies 
suggest that ethnicity and possibly body habitus should be 
taken into consideration in determining a safe MLA cut-
off value in clinical practice. However, when taken together, 
these studies highlight that an IVUS-defined MLA cut-
off of >6 mm2 appears to be a safe deferral threshold for 
revascularisation across Western and Asian populations. 

IVUS guided LMCA PCI has been found to significantly 

reduce all-cause mortality by 40%, cardiac death by 53%, 
plus reduce the risk of stent thrombosis and TLR in a 
meta-analysis of 10 studies with 6,480 patients undergoing 
IVUS-versus angiographic-guided stent insertion  
alone (51). Sub-group analysis revealed this significance was 
maintained across different study types, ethnic populations, 
and duration of follow-up (both <3 and ≥3 years). A more 
recent meta-analysis of 7 studies including 4,592 patients 
also found IVUS guidance to significantly reduce all-
cause death, cardiac death, stent thrombosis and MI, but 
had no significant benefit on TLR, likely due to the study 
being underpowered (52). It must be noted that only one 

Figure 1 Intravascular ultrasound assessment of an intermediate left main coronary artery stenosis. Eccentric and calcified distal left main 
coronary artery (LMCA) lesion (A). Representative cross-sectional intravascular ultrasound (IVUS) images of the proximal reference 
segment with highlighted minimal luminal area (MLA) (highlighted blue) (C) and target lesion MLA (blue) highlighting eccentricity and 
superficial calcification (D). The calculated MLA (shaded blue) was 5.1 mm2, which is below the safe deferral threshold of 6 mm2 (B). Panel 
B reproduced from Jasti et al. Circulation, 2004 (32).
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randomized controlled trial was included in each of these 
meta-analyses and, to our knowledge, just one further 
prospective RCT has been published since, in which IVUS-
guidance significantly reduced MACE (driven by reduced 
cardiac death), with no significant influence on MI, TLR 
or ST in 336 patients (53). How IVUS-guidance reduced 
mortality while having no significant effect on MI, ST 
or TLR remains to be elucidated. In the aforementioned 

trial the authors suggest it is likely related to reduced 
procedural adverse events, whereby IVUS enables greater 
characterisation of the vessel and lesion, improving stent 
sizing, placement, expansion and apposition, resulting in 
greater mean stent diameter (53). This is supported by a 
patient-level pooled registry analysis where IVUS improved 
clinical outcomes post-PCI in LMCA lesions (54).

LMCA lesions are frequently associated with downstream 

Table 1 Optimal IVUS-defined minimal luminal area (MLA) values to best predict FF

Study Patient/lesions FFR Best MLA cut-off (mm2) Sensitivity (%) Specificity (%) NPV (%) PPV (%)

LMCA studies

Park 2014 (36) 112/112 0.80 4.5 78.7 80.4 75.9 82.8

Jasti 2004 (32) 55/55 0.75 5.9 93.0 95.0 – –

Kang 2011 (35) 55/55 <0.80 4.8 89.0 83.0 89.0 82.0

<0.75 4.1 95.0 83.0 97.0 75.0

Non-LMCA studies

Takagi 1999 (37) 42/51 0.75 3.00 83.0 92.3 – –

Lee 2010 (38) 94/94 0.75 2.00 87.9 78.9 – –

Briguori 2001 (39) 43/53 0.75 4.00 92.0 56.0 96.0 46.0

Koo 2011 (40) 252/267 0.80 All 2.75 69.0 65.0 – –

Prox-LAD 3.00 75.0 88.0 75.0 88.0

Mid-LAD 2.75 73.0 78.0 83.0 68.0

RCA 3.00 86.0 50.0 96.0 22.0

Ben-Dor 2012 (41) 185/205 0.80 3.09 69.2 79.5 – –

Kang 2012 (42) 692/784 0.80 2.40 84.0 63.0 90.0 48.0

Yang 2014 (43) 206/206 0.80 Prox-LAD 3.20 85.1 66.7 – –

Mid-LAD 2.50 65.1 87.7 – –

Han 2014 (44) 822/881 0.80 2.75 61.0 63.0 73.0 49.0

580/623 0.80 2.75 65.0 68.0 – –

242/258 0.80 3.00 63.0 69.0 – –

Waksman 2013 (45) 350/367 0.80 3.07 64.0 65.0 83.0 40.0

Cui 2013 (46) 141/165 0.80 3.15 71.4 67.0 85.3 52.6

Naganuma 2014 (47) 109/132 0.80 2.70 80.0 76.0 89.9 58.5

Gonzalo 2012 (48) 56/61 0.80 2.36 67.0 65.0 65.0 67.0

Ben-Dor 2011(49) 84/92 0.80 3.20 69.2 68.3 – –

0.75 2.80 79.7 80.3 – –

Brown 2017 (50) 89/92 0.80 2.65 58.3 67.6 – –

NPV, negative predictive value; PPV, positive predictive value; MLA, minimal luminal area; FFR, fractional flow reserve; LMCA, left main 
coronary artery.
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and/or multivessel disease (55), potentially confounding 
the ability of FFR to accurately assess the true functional 
significance of the LMCA stenoses. The effect of downstream 
disease was assessed by Fearon et al., who demonstrated that 
true FFR was significantly lower than that measured in the 
presence of a stenosis (0.81±0.08 vs. 0.83±0.08, P<0.001), 
even when the transducer was placed in a non-diseased  
vessel (56). Although the magnitude of this discrepancy 
is small and unlikely to affect clinical decision making in 
the vast majority of cases, the authors did note that the 
functional significance of LMCA disease cannot be accurately 
determined in cases where FFR in the non-diseased vessel is 
between 0.81 and 0.85 and in the presence of deep ischaemia 
due to severe downstream stenosis (FFR <0.45). These 
scenarios raise the possibility that intravascular imaging 

may be of use in assisting clinicians make revascularisation 
decisions during angiography (Figure 2).

This diagnostic value of IVUS in LMCA lesions is 
recognised in ESC guidelines, recommending IVUS should 
be considered to assess the severity of unprotected left 
main lesions (Class IIa Level B) and considered to optimize 
treatment of unprotected left main lesions (Class IIa Level 
B). However, a MLA cut-off value is not yet detailed in 
guidelines, likely due to the discrepancies across reports and 
lack of large trial data (28).

IVUS assessment of non-LMCA lesions

The current gold standard to assess significance of non-
LMCA intermediate lesions remains physiological 

Figure 2 Hybrid use of intracoronary imaging and physiology to guide coronary revascularisation. Coronary angiography demonstrating 
intermediate distal left main coronary artery (LMCA) stenosis (A) with downstream severe disease in the mid left anterior descending (LAD) 
artery (B). Both fractional flow reserve (C) and resting full-cycle ratio (F) assessment confirm ischaemia within the LAD territory. Optical 
coherence tomography imaging demonstrates the minimal luminal area within the LMCA is 7.95 mm2 (D), highlighting that targeted 
revascularisation of the proximal to mid LAD should be considered and precluding need for intervention of the LMCA. 
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assessment (57). However, given the relative ease and safety 
of IVUS, several studies have sought to identify IVUS-
derived criteria (namely MLA) that can identify significant 
lesions with high diagnostic accuracy. To date, studies have 
generally reported poor diagnostic accuracy (66–74%) of 
IVUS-derived MLA in correlating with FFR <0.8 in non-
LMCA intermediate lesions (50). One promising study 
has reported an 83% sensitivity and 92.3% specificity 
to identify a FFR ≤0.75 (MLA cut-off 3 mm2) (37);  
however, subsequent studies have generally reported 
poorer diagnostic capability (Table 1) (42,46,58), and in 
one study of small vessels (<2.8 mm wide and <20 mm 
long) no correlation was found (59). Recent meta-analyses 
of non-LMCA studies report mean MLA cut-off of  
~2.60 mm2 with sensitivity and specificity of 75-79% and 
65-66% respectively, to identify a FFR ≤0.8 (60,61). Further 
diagnostic parameters are outlined in Table 1, in which 
IVUS-derived MLA is associated with (generally) far greater 
negative predictive values than positive predictive values, 
indicating that IVUS-derived MLA can provide clinical 
benefit in identifying stenoses acceptable for deferral, but 
should not be used in isolation to validate revascularisation 
of non-LMCA vessels. 

The diagnostic accuracy of IVUS is further driven by 
vessel location and anatomical variants. For example, a 
significant correlation between MLA and FFR <0.8 was 
identified in major epicardial vessels >3.5 mm, but not side 
branches <2.25 mm in 77 patients with intermediate ostial 
lesions (62). Table 1 lists the range of MLA cut-off values 
(2–4 mm2) reported in non-LMCA intermediate lesions 
including results from Koo et al., that revealed the need 
for different cut-off MLA values based on lesion location, 
and suggests that IVUS is unsuitable in vessels with high 
anatomical variation (40). Altering MLA cut-off values 
based on vessel diameter has been supported in one RCT 
in which 400 pairs of propensity score matched patients 
underwent PCI with a MLA of <4 mm2 in vessels >3 mm, 
and <3.5 mm2 in vessels 2.5–3 mm, or FFR ≤0.75 (63).  
MACE-free survival was equivalent between FFR and 
MLA-guided groups up to 2 years follow-up, with 
significantly more interventions performed in the IVUS 
compared with FFR group (48.8% vs. 28% P<0.001). 
Similarly, Nam et al. found IVUS-guidance (MLA cut-
off <4 mm2) resulted in a greater number of interventions 
compared to FFR-guidance (≤0.8) in 167 patients with 
intermediate coronary lesions, with no significant difference 
in MACE at 1 year. They also calculated that reducing 
the MLA cut-off to <3 mm2 equalized the number of 

interventions between groups, concluding that both FFR 
and IVUS were suitable for use in guiding PCI in patients 
with intermediate lesions (64). Increased stent use in IVUS-
guidance is often reported, with Park et al. also finding 
IVUS-guided therapy is associated with a greater number (as 
well as larger and longer stents used) with no improvement 
in patient outcomes, but rather a significant increase in 
target lesion failure predominantly due to periprocedural 
MI in a non-randomized post-hoc analysis of 463 matched 
patients from the EXCELLENT trial (65). 

IVUS-derived MLA has also been shown to correlate 
significantly with physiological indices other than FFR, 
including iFR, diastolic pressure ratio (dPR), and resting 
full-cycle ratio (RFR) (66). Despite the significant 
correlation, the diagnostic accuracy remains low (60.5–
62.4%; comparable with FFR 61.7%), with the best cut-off 
MLA being 3.4 mm2 across all indices (66). Matsushita et al. 
also recently reported IVUS-derived MLA to have just 67% 
sensitivity and 69% specificity to predict significant stenosis 
(iFR ≤0.89) requiring a cut-off MLA <1.8 mm2; equivalent 
to the FFR ≤0.8 (cut-off MLA 2.0 mm2) (67). Together, 
these data suggest that IVUS provides limited diagnostic 
accuracy in predicting functionally significant stenosis 
identified by FFR and iFR.

Reasons for the relatively poor diagnostic accuracy of 
IVUS in identifying functionally significant CAD is due 
to several factors including ethnicity, FFR cut-off, vessel 
size, and high anatomical variations. It is well established 
that MLA cut-off differs between Asian and Western 
populations, with comparably lower MLA cut-off values 
reported in Asian studies of 2.75 vs. 3.0 mm2 (44) and 2.68 
vs. 3.03 mm2 (61), respectively. The reasons suggested for 
this may be associated with a lower body mass index and 
myocardial mass in Asian patients, but also potentially 
different lesion characteristics between ethnicity’s (44,61). 
The accuracy of IVUS-derived MLA can be improved when 
the target FFR is reduced to <0.75 (49,60,61). However, 
most studies adopt an FFR of 0.8 to provide greater clinical 
relevance and minimise the number of untreated lesions 
that may result in ischemia, and as such validating an 
MLA cut-off value for a FFR <0.75 may be inappropriate 
despite the improved accuracy (61). Alternatively, accuracy 
may be improved by combining other IVUS-derived 
parameters with the MLA, including stenotic area, minimal 
luminal diameter (MLD), and lesion length; increasing the 
sensitivity up to 100% in one study (37-39). Furthermore, 
computational “machine learning algorithms” are now 
being developed which are significantly improving the 
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diagnostic accuracy of IVUS to identify lesions with an 
FFR ≤0.8 up to 86%, with the aim to reduce the need for 
pressure wire assessment (68).

Basic principles of OCT 

Optical coherence tomography is an intravascular 
imaging technique which utilises light waves and time-
delay information in a modality analogous to ultrasound 
providing a real-time portrayal of intraluminal and 
transmural coronary anatomy (69). By analysing the 
interference pattern of light waves emitted by the catheter 
using a tool known as the interferometer, the system is able 
to generate a ‘depth-profile’ of the luminal walls allowing 
detailed assessment. Since the light waves used have a much 
higher frequency than sound waves, the spatial resolution 
(i.e., the number of pixels used to construct a single image) 
offered by OCT is greater than that of IVUS, albeit with 
poorer tissue penetration (70).

First demonstrated in vivo  in ophthalmological 
applications, OCT has found use in the characterisation 
o f  i n t r a c o r o n a r y  l e s i o n s  d u r i n g  p e r c u t a n e o u s  
intervention (71). OCT systems begin by scanning the light 
beam across a cross-sectional sample to capture an ‘A-scan,’ 
which is a 1-dimensional depth profile. As the catheter 
automatically and rapidly rotates within the portion of 
coronary artery being assessed, this process is repeated to 
generate a 2-dimensional ‘B-scan’ (72). The pullback system 
then begins, imaging the vessel in this same manner along 
a pre-determined length of its lumen. The series of B-scans 
are then compiled into a 3-dimensional, volumetric image 
known as a ‘volume scan’ (73). As infrared light cannot 
penetrate blood, OCT systems require blood to be flushed 
from the arterial lumen prior to analysis as the presence of 
erythrocytes causes excess scatter, significantly decreasing 
imaging quality (71,73). Methods for removing blood from 
the imaging field are divided into occlusive, involving gentle 
balloon inflation proximal to the imaged segment, or non-
occlusive. Non-occlusive methods are most common with 
the automated intracoronary administration of crystalloids, 
iso-osmolar solution, or more commonly contrast (74).

The use of OCT provides several technical and clinical 
benefits over IVUS. Firstly, OCT systems are capable of 
achieving faster rotational speeds and hence quicker data 
acquisition than IVUS, improving workflow and minimising 
procedural time (75). OCT also provides significantly 
higher resolution (10–15 versus 100 μm) when compared 
with IVUS (76). The improvement in resolution allows the 

operator to more readily identify dissections, ulceration, 
thrombus, characterise the size of the coronary vessel 
and detect stent malapposition (75-77). Furthermore, the 
features of the backscattered light captured by the catheter 
on their return can help differentiate atherosclerotic 
plaques into fibrous or fibrocalcific, and identify presence 
of a necrotic core, seen as signal-poor regions with poorly-
delineated borders and little-to-no backscatter (78). Newer 
generation OCT catheters also have increased deliverability, 
being able to be manipulated through tortuous and small 
calibre coronary vessels.

There are however limitations. Given the light source 
used by OCT approaches the infrared spectrum with 
a wavelength average of 1,350 nm, there is an inherent 
limitation to the depth of field of OCT imaging. This 
particularly becomes problematic during imaging of the 
LMCA, where the vessel dimensions can regularly exceed 
4mm. Furthermore, it can be difficult to create a blood-free 
field in the LMCA due to the high coronary flow volumes 
in this anatomical location. This can interfere with image 
acquisition and limits assessment of luminal dimensions 
and plaque morphology. Finally, OCT cannot be used in 
the assessment of aorto-ostial lesions of the right or left 
coronary arteries as it is not possible to adequately clear 
blood from these locations and thus these lesions lend 
themselves more towards IVUS assessment (79).

OCT assessment of intermediate lesions

Similar to IVUS, OCT has also found relevance in the 
quantification of LMCA lesion severity (Figure 3). Although 
initial data correlating MLA and FFR was obtained and 
validated using IVUS (80), these criterion are increasingly 
being extrapolated to OCT (Figure 4). Experimental 
phantom models have shown that IVUS may overestimate 
luminal area by up to 10%, while OCT measurements are 
highly accurate to ‘true’ luminal dimensions. Thus, in vivo 
OCT typically presents smaller cross-sectional luminal areas 
than IVUS and operators need be aware of this discrepancy 
when interpreting images. Based on these observations, 
LMCA lesions with MLA >5.4 mm2 on OCT are generally 
considered a safe cut-off for deferral of revascularisation (81).

There is increasing data supporting OCT-derived MLA 
as a superior predictor of functional ischaemia, when 
compared with IVUS in non-LMCA. In a study of 186 
patients assessing 203 de novo lesions diagnostic efficacy 
of MLA obtained by OCT and IVUS to predict an FFR 
of <0.75 was assessed. Receiver operator characteristic 
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Figure 3 Optical coherence tomography assessment of the distal left main coronary artery bifurcation. Intermediate angiographic distal 
left main coronary artery (LMCA) lesion (A), with cross sectional optical coherence tomography image (B) of the distal LMCA body with 
minimal luminal area (MLA) of 3.82 mm2. Importantly, the MLA decreases significantly at the point of confluence (C), which illustrates a 
slit like orifice to the circumflex artery. Further OCT images of the proximal to mid LAD (D) then highlight concentric calcification, which 
may act to resist semi-compliant balloon dilatation.

A

B

C D

curve analysis showed that OCT-MLA had a statistically 
significantly better diagnostic efficacy than IVUS-MLA in 
identifying ischaemia (FFR <0.75) with the best MLA cut-
off values of 1.39 mm2 (AUC: 0.732, 95% CI: 0.660–0.804) 
and 2.57 mm2 (AUC: 0.615, 95% CI: 0.53–0.696) for 
OCT and IVUS respectively. Interestingly, there was no 
significant difference between OCT- and IVUS-MLA 
for the prediction of FFR ≤0.80 (P=0.13) (82). Although 
this study suggests that OCT may have superior efficacy 
to IVUS in detecting functional ischaemia, it must be 
cautioned that intravascular imaging is currently not 
interchangeable with FFR in clinical decision making but 
rather these results suggest that OCT may be preferable 
to IVUS where there may be doubt, and may reduce the 
incidence of unnecessary coronary intervention. 

Previous meta-analyses support these findings. A 
metanalysis of 6,919 patients with 7537 non-LMCA lesions 

found OCT- and IVUS-derived MLA had similar sensitivity 
in predicting haemodynamically significant lesions 
(0.732 vs. 0.747, P=0.519). OCT-derived MLA however 
had higher specificity (76.3% vs. 66.5%, P<0.001) and 
diagnostic accuracy in detecting flow limiting lesions than 
IVUS respectively (AUC 0.810 vs. 0.754, P=0.045) (83).  
Of the seven trials included in the analysis specifically 
utilising OCT, 340 patients and 438 lesions were assessed. 
These and other similar studies are presented in Table 2. In 
the largest trial included in the analysis, Reith et al. found 
that amongst their 100 patients with 142 lesions, receiver 
operator characteristic analysis demonstrated a moderate 
diagnostic efficacy of OCT-derived MLA with a best cut-off 
values of 1.64 mm2 (AUC: 0.836, 95% CI: 0.772–0.901) for 
the prediction of FFR ≤0.80 (90). These combined results 
suggest that OCT, with its superior imaging resolution, 
is the preferred intravascular imaging modality for the 
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Figure 4 Optical coherence tomography and fractional flow reserve. Intermediate lesion of the distal left main coronary artery (A), which 
extends into the proximal left anterior descending (LAD). Initial optical coherence tomography images (B) demonstrate a minimal luminal 
area of 2.64 mm2, with evidence of a small intimal dissection (at 11 o’clock). Fractional flow reserve (FFR) assessment of the vessel (C) 
demonstrates that the lesion is highly haemodynamically significant (FFR 0.67).

detection of haemodynamically significant stenosis in non-
LMCA lesions.

More recent data has also suggested that OCT may be 
of equal, or even superior, to FFR in guiding PCI decisions 
in intermediate lesions. The FORZA trial was a direct 
comparison between OCT and FFR in a 1:1 randomisation 
pattern. If either FFR or OCT identified a lesion as 
significant, based on current criteria (FFR ≤0.80 or OCT 
area stenosis ≥75% or 50–75% with MLA <2.5 mm2), the 
patient underwent PCI with optimisation using the same 
technique. Using pre-defined endpoints of MACE and 
residual angina, FFR was found to be a more cost-effective 
strategy with more patients being medically managed 

(62.5% vs. 44.8%; P<0.001) however an OCT-guided PCI 
strategy saw a reduction in all-cause mortality, non-fatal 
MI, TVR, kidney injury, and significant angina at 13-month 
follow-up (92). Although the results of this trial are unlikely 
to alter the current guidelines on physiological assessment 
of intermediate lesions, it does raise the possibility that an 
intravascular image-guided approach may yield very similar 
outcomes and should not be considered inappropriate.

FFR is not without its limitation and as discussed, 
LMCA lesions may be associated with downstream disease 
limiting accurate assessment with FFR alone. There is no 
data utilizing OCT in this clinical scenario however as seen 
in Figure 2, OCT in combination with FFR assessment 

A

B
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may aid operators in accurate assessment of lesions which 
require intervention.

Future directions

Moving forward, the future of OCT and IVUS assessment 
may lie in coupling with computational fluid dynamics 
(CFD) simulations of coronary flow and pressure. Use 
of CFD technology has potential for clinicians to gather 
simultaneous anatomical and functional assessment of 
individual coronary lesions. Bezerra et al. (93) have applied 
these concepts to reconstructed 3D IVUS images, showing 
a moderate-to-high correlation with invasive pressure wire 
FFR (r=0.79; P<0.001). The overall accuracy, sensitivity, 
specificity, positive predictive value and negative predictive 
value of this approach was 91%, 89%, 92%, 80% and 96%, 
respectively to identify FFR <0.80. Similar results have 
also been shown with OCT, and may be preferable given 
its higher resolution and more robust estimates of luminal 
dimensions. In a study of 92 patients with intermediate 
stenosis undergoing both OCT and FFR assessment, a 
CFD algorithm was utilised to calculate computational 
FFR (FFROCT). With a functionally significant stenosis 
defined as an FFR of <0.80, FFROCT resulted in 
accuracy, sensitivity and specificity of 88%, 69% and 96% 
respectively. There remains some hurdles though before 
this technology is more widely adopted. Firstly, further 
validation work is required in more diverse lesion and 
patient cohorts. Secondly, computational time for CFD is 
still relatively high and this precludes use in a high paced 

cath lab environment (94). Nevertheless, there is clear 
potential for the future and there are several industry led 
collaborations attempting to deliver this technology to 
clinicians soon.

Conclusions

Optimal management of intermediate CAD on angiography 
remains a significant clinical challenge. Although invasive 
physiological assessment with FFR or iFR remains current 
gold standard, a number of clinical scenarios may push 
clinicians towards assessment of lesion severity using 
intravascular imaging.
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