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Background: Recognizing low right ventricular (RV) function from 2-dimentiontial echocardiography 
(2D-ECHO) is challenging when parameters are contradictory. We aim to develop a model to predict low 
RV function integrating the various 2D-ECHO parameters in reference to cardiac magnetic resonance 
(CMR)—the gold standard.
Methods: We retrospectively identified patients who underwent a 2D-ECHO and a CMR within 3 
months of each other at our institution (American University of Beirut Medical Center). We extracted 
three parameters (TAPSE, S’ and FACRV) that are classically used to assess RV function. We have assessed 
the ability of 2D-ECHO derived parameters and clinical features to predict RV function measured by the 
gold standard CMR. We compared outcomes from four machine learning algorithms, widely used in the 
biomedical community to solve classification problems.
Results: One hundred fifty-five patients were identified and included in our study. Average age was 
43±17.1 years old and 52/156 (33.3%) were females. According to CMR, 21 patients were identified to have 
RV dysfunction, with an RVEF of 34.7%±6.4%, as opposed to 54.7%±6.7% in the normal RV population 
(P<0.0001). The Random Forest model was able to detect low RV function with an AUC =0.80, while 
general linear regression performed poorly in our population with an AUC of 0.62.
Conclusions: In this study, we trained and validated an ML-based algorithm that could detect low RV 
function from clinical and 2D-ECHO parameters. The algorithm has two advantages: first, it performed 
better than general linear regression, and second, it integrated the various 2D-ECHO parameters. 
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Introduction

The cardiology community has historically neglected 
the right ventricle’s (RV) role in the development and 
progression of heart failure (HF). However, with the 
recognition of RV function as an important prognostic 
factor in several diseases such as HF and pulmonary 
hypertension (PH) along with the need of accurate RV 
measurements for ventricular assist devices (VADs), 
assessment of the RV has become a cornerstone in cardiac 
evaluation (1-6). Unfortunately, the irregular shape of the 
RV and lack of normative data challenged the cardiologists 
when trying to integrate the assessment of the RV as part 
of the standard Echo evaluation and in clinical decision-
making (7).

Currently, assessing RV function by 2-dimensional 
echocardiography (2D-ECHO) represents the first choice 
for clinicians (7). However, despite years of experience in 
measuring RV function, cardiologists still find this task 
difficult and frequently the RV function is misclassified. 
In one study assessing concordance levels between 
2D-ECHO and CMR imaging there was fair agreement 
between the two modalities with the prevalence-adjusted 
bias-adjusted Kappa being 0.43 (range, 0.36–0.45), and 
poor inter-echocardiographer agreement with a Kappa 
of 0.12 (7). Simply, we cannot extrapolate data and long-
term experience gained from conventional left ventricular 
(LV) evaluation to the RV. This could be attributed to the 
complex three-dimensional RV shape, poor definition of RV 
endocardial surface (LV is much thicker than RV), limited 
direct visualization due to the retrosternal position of RV, as 
well as uneven complex contraction-relaxation forces along 
the RV segment (8-11).

RV EF calculation from 2D-ECHO requires several 
geometric assumptions, and this has proven to be an 
inaccurate way for EF estimation. Another way is to derive 
RV systolic function from other measurements such as 
the RV fractional area-change (FACRV) and lateral TA 
peak systolic excursion (TAPSE), which provide similar 
information to RVEF (8,12,13). Other quantitative values 
also include RV strain, peak S wave velocity of the lateral 
tricuspid annulus by tissue Doppler imaging (RV S’) (9). 
The abnormality thresholds for S’, TAPSE, RV Strain, 
and FACRV found in the literature are <9.5 cm/s, <17 mm, 
<−25%, and <48.5%, respectively (10,11,14,15). With 
TAPSE being the most sensitive (93%) and specific (100%) 
of all 4.

While 3D-ECHO is supposed to give a better RVEF 

estimation in comparison to CMR-derived RV EF and 
negate the geometrical assumptions made with 2D-ECHO 
RVEF estimation, it has its own limitations such as being 
technically challenging, not being widely available yet, and 
the difficulty of tracing RV border (16,17). When the RV 
is dilated, such as in corrected Tetralogy of Fallot patients, 
identifying specific landmarks such as the true RV apex and 
the pulmonary valve becomes very difficult (18).

Machine learning develops a prediction model using 
data, algorithms and computing power. The use of 
logistic regression models to predict complex biological 
relationships may be limited in some contexts, partly 
because many biological relationships are non-linear. In the 
realm of ML and imaging, the use of artificial intelligence 
approaches (19,20), has enabled automated detection of 
LV and left atrial endocardial boundaries throughout 
the cardiac cycle from 3DE data sets, allowing accurate 
measurements of LV and left atrial volumes and EF (21-25).

The aim of our study is to develop models that can 
predict low RV function by integrating several 2D-ECHO 
derived parameters in reference to cardiac magnetic 
resonance, and then compare these models to single-
parameter assessment of RV function. We present the 
following article in accordance with the TRIPOD checklist. 
Available at http://dx.doi.org/10.21037/cdt-20-471.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of the American 
University of Beirut (Registration Number: IRB00003225). 
Patient consent was waived due to the retrospective nature 
of the research. Patient characteristics were extracted by one 
investigator (AA) while ECHO parameters were extracted 
and validated by 2 different investigators (ZI and LM). 
CMR parameters were extracted by an experienced operator 
(HI), blinded to the clinical and ECHO parameters.

Selection of subjects

We retrospectively identified consecutive patients older than 
18 years of age who underwent a 2D-ECHO and a CMR 
within 3 months of each other at our institution (American 
University of Beirut Medical Center, Beirut, Lebanon) 
from 2012 to 2013. Indications for the standard Two-
Dimensional Echocardiography (2D-ECHO) were various 
and no exclusion criteria were applied. From the ECHO, 
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LV EF, TAPSE, S’ and FACRV were extracted from four 
standard views [Apical Four Chamber (A4C), Parasternal 
Long axis (PLAX), Parasternal Short axis: Aortic Valve 
level (PSAX), and RV inflow view]. These views are done 
as per the standard 2D-ECHO protocol in our institution. 
We then used the CMR determined RV function as our 
reference standard. In our population, the CMR was mostly 
ordered to assess the LV (function, scar burden and/or 
viability) (25%), to rule out myocarditis (13%), or to rule 
out Arrhythmogenic Right Ventricular Disease (ARVD) 
(13%). Other indications included cardiac sarcoidosis 
evaluation, ruling out hypertrophic cardiomyopathy and 
others. As per recent data from the UK Biobank population 
cohort, we classified CMR RVEF values below 45% as 
abnormal (26). Furthermore, patient related characterizes 
(age, sex, cardiovascular risk factors) at the time of the 
studies were also extracted from their records.

Statistical analyses

All statistical analyses and data curation were performed 
using the R programming language. The data was cleaned 
by excluding patients with missing values (especially 
outcome values) .  Cohort-specif ic categorical  and 
continuous data as well as corresponding inferential and 
descriptive statistics are shown in Table 1. Continuous 
variables distributed normally were expressed as the mean ± 
standard deviation, categorical variables were expressed as 
frequency (percentage). Enrolled patients were divided into 
two groups—those with RV Dysfunction (RVEF <45%) and 
those without RV dysfunction (RVEF >45%). For between-
group comparisons, unpaired t-test was used for normally 
distributed continuous variables, Mann-Whitney U test for 
non-normally distributed variables, and χ2 test (and Fisher’s 

exact test) for categorical variables. For all tests, a P value 
<0.05 was considered statistically significant. Accuracy 
refers to [true pos/pos + true neg/neg]/2.

Machine learning pipeline 

After splitting the data into training and validation sets, 
we randomly replicate samples from the minority class 
(abnormal RV) in the training set to deal with data 
imbalance (over sampling technique) in the subsequent 
cross-validation step. To test the ability of 2D-ECHO 
and laboratory records to predict RV dysfunction, we 
implemented four machine learning methods with varying 
complexity using the CARET package in R: a generalized 
linear model (GLM) (logistic regression), a support vector 
machine (SVM) using a radial basis function (RBF), a 
Random Forest (RF) which employs an ensemble of 
decision trees to construct a predictive model and Elastic 
net regularization, a regression method that combines the 
penalties of lasso and ridge regressions (Rpart).

For all ML models, seed values were fixed, tuning and 
hyper-parameters were set to default as implemented in 
CARET. We randomly partitioned the data into the ratio 
of 60:20:20 for training, validation and testing respectively. 
Then, we opted for the repeated train/validation split or 
leave group out cross-validation strategy and the ratio 
of 3:1 to split the training set into train/validation splits; 
this step is repeated 100 times and is coupled, within the 
cross-validation, with oversampling for class imbalance in 
CARET (since out data is skewed towards normal RV). 

Each of the ML methods has a built-in feature 
selection scheme and ranks variables by importance. The 
top four most important variables were retained with 
regard to each of the algorithms. In addition, the Boruta 
algorithm implemented in R was also independently used 
for feature selection (27). It is built around the random 
forest classification algorithm and tries to capture all the 
significant features in a dataset. Subsequently, several ML 
models are built with either the whole set of variables or 
selected features from Boruta. A decision tree was built 
using the best algorithm with the version with the lowest 
out-of-bag (OOB) error.

Finally, the model with the optimal receiver operating 
characteristic (ROC) curve was selected to further 
investigate its corresponding performance on the test set 
(20% of the population). Furthermore, and to confirm that 
RF outperformed other methods in terms of AUROC, we 
used a pairwise t-test with Bonferroni correction to compare 

Table 1 Data used for predictive modelling

Continuous variables Binary variables

“Age” “Dyslipidemia Yes/No”

“RV FAC” “Coronary artery disease Yes/No”

“TAPSE” “Smoking Yes/No”

“S” “Diabetes type2 Yes/No”

“Hypertension Yes/No”

“Gender Male/Female”

FAC, fractional area change; TAPSE, tricuspid annular plane 
systolic excursion; S, S-wave velocity.
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the mean of AUROC values, across the same resampling 
results, from the leave group out cross-validation folds 
extracted from all ML methods. To compare resampling 
results across ML methods, we matched the same indices in 
the R object trainObject$control$index.

Results

One-hundred ninety-six [196] patients were eligible to be 
included in our study. Twenty-five were excluded because 
of missing outcomes data and 16 with missing ECHO data. 
One-hundred fifty-five [155] patients were included in our 
analysis. Average age was 43±17.1 years and 52/155 (33.5%) 
were females. Baseline characteristics are summarized in 
Table 2, patients with abnormal RV function had higher 
diabetes (33.3% vs. 12.7%; P=0.02) and lower LV EF 
(34.2 vs. 52.7; P<0.0001). According to CMR, 21 patients 
were identified to have RV dysfunction, with an RVEF of 
34.7%±6.4%, as opposed to 54.7%±6.7% in the normal RV 
population (P<0.0001).

All four ML algorithms optimized the ROC and 
generated best models, from either all variables (Table 1) 
or selected features from Boruta algorithm (Table 3), which 

were evaluated on the test set (20% of the population). 
Representative confusion matrices for all variables and 
selected top variables are shown in Tables 4,5, respectively. 
Clearly, the Random Forest (RF) model (OOB error of 
3.24%, 500 trees, and a mtry of 2) yielded the highest 
accuracy and the best balance between sensitivity and 
specificity, especially when using Boruta features: age, 
FACRV, hypertension, TAPSE and S’. Its AUC reached 
0.82 when trained with these features, higher than other 
ML models and general linear regression analysis (AUC 
=0.71). When comparing ROC curves to confirm that 
RF outperformed all other methods (Table 6), there was 
no significant difference in area under ROC between RF 
and ElasticNet when the same cross-validation folds were 
compared (P=1). However, ElasticNet seems to overfit; 
thus, did not generalize well on the test dataset. However, 
and as predicted, the accuracy drops when we generated 
the MCC for our models. However, when comparing 
MCCs; RF (MCCRF =0.52) was significantly a better choice 
for classification in our dataset when compared to other 
algorithms (MCCSVM =0.3) and general linear regression 
(MCCGLM =0.31) (P=0.002).

Interestingly, the five important variables, flagged with 

Table 2 Baseline characteristics

RV function
P value

RV EF ≥45%, N=134 RV EF <45%, N=21

Clinical parameters

Age (years) 42.2±16.9 49.7±17.4 0.07 

Females, n (%) 46 (34.3) 6 (28.5) 0.6 

Hypertension, n (%) 43 (32.0) 11 (32.4) 0.07 

Dyslipidemia, n (%) 41 (30.6) 6 (28.6) 0.85 

Type 2 diabetes, n (%) 17 (12.7) 7 (33.3) 0.015

Smoking exposure, n (%) 56 (41.8) 7 (33.3) 0.45 

Coronary artery disease, n (%) 25 (18.7) 7 (33.3) 0.12 

Imaging parameters

RV EF (%) 54.7±6.7 34.7±6.4 <0.0001 

LV EF (%) 52.7±11.8 34.2±13.5 <0.0001

FAC (%) 43.6 34.8 0.0002 

S’ (cm/s) 12.9 11.3 0.01 

TAPSE (mm) 21 17.8 0.04 

RV, right ventricle; LV, left ventricle; EF, ejection fraction; FAC, fractional area change; TAPSE, tricuspid annular plane systolic excursion; S, 
S-wave velocity.
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Table 3 Top five important variables from built-in feature selection with different models 

Method 1 2 3 4 5

SVM Age FAC TAPSE S’ HTN

GLM Age FAC DL DM2 HTN

RF Age FAC TAPSE S’ HTN

ELASTICNET DL FAC Smoker DM2 HTN

A Seed of [123] was fixed for all methods with set. Seed function in R. SVM, support vector machine; GLM, generalized linear method; RF, 
random forest; HTN, hypertension; DM2, diabetes mellitus type 2; DL, dyslipidemia; FAC, fractional area change, TAPSE, tricuspid annular 
plane systolic excursion, S, S-wave velocity.

Table 4 Confusion matrices for the test set 

Method Sens (%) Spec (%) Accuracy (%) AUC (ROC) MCC

RF 25 100 90 0.80 0.47 (P=0.001)

ELASTICNET 50 81 77 0.69 0.25 (P=0.024)

Rpart 50 77 73 0.65 0.21 (P=0.063)

SVM 25 92 83 0.69 0.2 (P=0.036)

GLM 50 73 70 0.62 0.17 (P=0.061)

All attributes were used to train the ML models. SVM, support vector machine; GLM, generalized linear method; RF, random forest.

Table 5 Confusion matrices for the test set using important attributes (age, S, TAPSE, FAC, HTN), from the Boruta Feature selection algorithm, 
were used to train the ML models 

Method Sens (%) Spec (%) Accuracy (%) AUC (ROC) MCC

RF 50 96 90 0.86 0.52 (P=0.002)

ELASTICNET 75 81 80 0.75 0.43 (P=0.002)

GLM 75 70 70 0.71 0.31 (P=0.012)

SVM 50 85 80 0.82 0.3 (P=0.012)

Rpart 50 77 73 0.65 0.21 (P=0.063)

SVM, support vector machine; GLM, generalized linear method; RF, random forest; FAC, fractional area change; TAPSE, tricuspid annular 
plane systolic excursion; S, S-wave velocity; HTN, hypertension.

Table 6 Comparison of area under ROC curves among ML methods using the same folds from the leave group out cross-validation 

SVM ELASTICNET GLM RF Rpart

SVM – −0.013778 0.022889 −0.001333 0.061861

ELASTICNET 1 – 0.036667 0.012444 0.075639

GLM 0.27595 5.651E-08 – −0.024222 0.038972

RF 1 1 0.18639 – 0.063194

Rpart 2.444E-06 1.68E-07 0.02722 1.18E-08 –

Upper diagonal: estimates of the difference from unpaired t-test. Lower diagonal: P values. SVM, support vector machine; GLM,  
generalized linear method; RF, random forest.



864 Ahmad et al. Machine learning to detect low RV function from 2D-ECHO

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):859-868 | http://dx.doi.org/10.21037/cdt-20-471

Boruta, were also concordantly selected as the top five 
most important features only from RF and SVM built-in 
feature selection functions. All models have an improved 
performance when trained with the top variables from 
Boruta except in the ElasticNet model, where it was 
unchanged.

Also, from the top five important variables extracted 
from the built-in feature selection functions (Table 3), 
FACRV and hypertension were featured by the different 
models as top predictors of RV dysfunction. TAPSE and 

S’ were emphasized by two methods; SVM and random 
forest but not GLM and Elastic Net. While age was not 
correlated with the outcome (spearman rho =0.056, P=0.48), 
it featured in all models except Elastic Net. Diabetes type 2 
status showed up only in the regression-based models (GLM 
and Elastic Net), while smoking exposure was chosen in all 
models but SVM.

The tree (Figure 1) from the random forest model which 
classifies best the training data (mtry: 3, OOB error: 4.63%, 
number of trees: 500). The tree has the maximum number 

Figure 1 Decision Tree built based on the random forest machine learning algorithm. FAC, fractional area change; TAPSE, tricuspid 
annular plane systolic excursion; S, S-wave velocity. 
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of nodes (25 terminal nodes corresponding to predictions, 
either normal or abnormal). Finally, an online calculator was 
constructed using both RF and Elastic-Net Models and is 
using this link: https://nelhachem.shinyapps.io/ShinyApp_
ML/.

Discussion

In this paper, we describe a new ML-based algorithm based 
on a random forest plot analysis that provides reasonable 
accuracy in detecting low RV function using clinical 
characteristics and 2D-ECHO derived parameters. The 
top predictors of RV dysfunction vary between ML-models 
used, but age, FACRV, and HTN were recurring selections. 
TAPSE and S’ appeared in the two most accurate models.

Accurate evaluation of RV function is crucial as a 
diagnostic and prognostic factor of several diseases. This 
has led to appreciation of its complex 3D shape and 
underscored the limit of 2D-ECHO images in assessing this 
function. However, 3D-echocardiography requires expertise 
and is not yet widely available. In some cases of multiple 
ECHO-derived parameter RV assessment, contradictory 
interpretation of the measurements might occur, often 
leading to more confusion. Hence using clinical features 
in addition to echo data would be able to guide physician 
effort to detect impaired RV function. Therefore, the use 
of parameters other than FACRV, TAPSE, and S’ should be 
investigated.

Since TAPSE and S’ are inherently similar and usually 
correlate (28), the use of another widely studied RV 
2D-ECHO derived parameter, such as RV strain, might 
provide an additional benefit in detection of low RV 
function when added to the production of the accuracy 
of our models. In fact, RV strain was shown to have a 
good correlation with RV function in multiple diseases 
such as COPD, PH and certain types of HF (15,28-31).  
Furthermore, our group recently showed that using a 
speckle-based strain analysis could help differentiate 
between types of cardiomyopathy in an artificial convoluted 
network, a commonly used ML method (32). Finally, the 
use of automatic-border detection (ABD) for strain analysis 
could be used to eliminate intra-operator variability and 
to lessen the need for heavy post-processing of images as 
shown in two recent studies which used ABD and ML-
based algorithm to asses RV function from 3D-ECHO 
(33,34). Another study used ABD for volumetric analysis of 
the RV, an important factor when assessing RV function (35). 
Recently, the use of ABD in the estimation of RVEF with 

3D-ECHO was shown to be superior to manually drawn 
border, reducing inter- and intra-observer variability of 
measurements (36-40).

Another easily accessible and cheap method that could 
be used in detecting low ventricular function is an ECG. 
In a study published in nature, investigators were able to 
produce an AI that would detect low LV function (<35%) 
with an AUC of 0.93 (41). Replicating the model with a 
large dataset to create an AI to detect RV function or to 
incorporate ECG with other parameters to help detect low 
RV function should be studied.

Alternatively, perhaps there would be value in building 
predictive models that prioritize either specificity or 
sensitivity. In our study, models were designed to maximize 
overall predictive accuracy (F1 score), but possibly in this 
context a useful model might be one prioritizing high 
sensitivity for identifying low RV function so we can 
identify patients in need for CMR.

Finally, future investigations will include ABD along 
with automatic detection of TAPSE + S’ from captured 
ECHO clips, spontaneously inserting them into the model 
and hence getting an instant RV assessment of RV function. 
Several studies have previously applied ABD technology to 
extract RV parameters. This cutting-edge technology is still 
limited by availability of the advanced imaging machines.

Limitations

A major limitation of our study is our small population. 
Using a larger population would make the algorithm more 
reliable/replicable and would allow the use of additional 
data features, such as ECG waveforms. In addition, our 
population represents a negatively balanced dataset, where 
dysfunctional RV represented only 14% of our total 
population. Negatively balanced datasets are a notorious 
limitation for machine learning algorithm. This is the 
reason we calculated the Matthews correlation coefficient, 
which is regarded as a balanced measure in that can be used 
when classes are of different sizes, i.e., unbalanced datasets. 
Another limitation is that our study is a single center study, 
with a majority of subjects from a Middle Eastern ethnic 
background. Thus, more studies should be conducted to 
validate our model in other populations.

Another limitation is that the study was retrospective, 
and thus some limitations in extracting parameters from the 
ECHO windows, since the studies were not done to asses 
RV function solely. This has led to limitations in computing 
RV strain, which could have been used in our algorithm as 

https://nelhachem.shinyapps.io/ShinyApp_ML/
https://nelhachem.shinyapps.io/ShinyApp_ML/
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another feature, as discussed above. The studies included 
in this analysis were mostly done between 2012 and 
2013, before the acquisition of newer higher resolution 
echocardiography machines. The new machine would 
have made it easier to acquire images of the RV despite its 
retrosternal, angle-dependent, respiratory cycle-dependent, 
position.

Furthermore, the use of RV strain and automated 
3D-ECHO-derived RVEF measurements from ECHO 
images could have provided an added value to our model. 
However, these measurements pose a technical difficulty 
outside specialized tertiary medical centers and are not 
widely used yet, therefore our model uses common 
2D-ECHO measurements. Finally, the use of raw ECHO 
DICOM images in a convolutional neural network-based 
algorithm might have had an incremental value to the 
diagnosis of RV dysfunction; however, convolutional neural 
networks require a significantly larger data set than what is 
available for training, validating, and testing the models.

Conclusions

Non-invasive assessment of RV function is a technically 
challenging task and clinicians usually rely on visual 
assessment of RV size and contractility. In this study, we 
trained and validated an ML-based algorithm that could 
detect low RV function from clinical and 2D-ECHO 
parameters. The algorithm performed better than common 
statistical methods.

Acknowledgments 

We would like thank Dr. Hussein Taleb for his contribution 
to the proposal.
Funding: Medical Practice Plan at American University of 
Beirut (https://www.aub.edu.lb/fm/fao/Pages/MPP.aspx).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at http://dx.doi.
org/10.21037/cdt-20-471

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/cdt-20-471

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.

org/10.21037/cdt-20-471). HI serves as an unpaid editorial 
board member of Cardiovascular Diagnosis and Therapy from 
Jul 2019 to Jun 2021. The other author has no conflicts of 
interest to declare.  

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
Institutional Review Board of the American University 
of Beirut (Registration Number: IRB00003225). Patient 
consent was waived due to the retrospective nature of the 
research.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. 
Comparison of echocardiographic markers of right 
ventricular function in determining prognosis in chronic 
pulmonary disease. J Am Soc Echocardiogr 2002;15:633-9.

2.	 Ghio S, Gavazzi A, Campana C, et al. Independent and 
additive prognostic value of right ventricular systolic 
function and pulmonary artery pressure in patients with 
chronic heart failure. J Am Coll Cardiol 2001;37:183-8.

3.	 Mehta SR, Eikelboom JW, Natarajan MK, et al. Impact of 
right ventricular involvement on mortality and morbidity 
in patients with inferior myocardial infarction11Drs. 
Mehta and Eikelboom were recipients of Heart and Stroke 
Foundation of Canada Research Fellowship Awards. 
Professor Yusuf is the recipient of a Medical Research 
Council of Canada Senior Scientist Award and holds a 
Heart and Stroke Foundation of Ontario Research Chair. J 
Am Coll Cardiol 2001;37:37-43.

4.	 Pueschner A, Chattranukulchai P, Heitner JF, et al. 
The Prevalence, Correlates, and Impact on Cardiac 
Mortality of Right Ventricular Dysfunction in 

https://www.aub.edu.lb/fm/fao/Pages/MPP.aspx
http://dx.doi.org/10.21037/cdt-20-471
http://dx.doi.org/10.21037/cdt-20-471
http://dx.doi.org/10.21037/cdt-20-471
http://dx.doi.org/10.21037/cdt-20-471
http://dx.doi.org/10.21037/cdt-20-471
http://dx.doi.org/10.21037/cdt-20-471
https://creativecommons.org/licenses/by-nc-nd/4.0/


867Cardiovascular Diagnosis and Therapy, Vol 10, No 4 August 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):859-868 | http://dx.doi.org/10.21037/cdt-20-471

Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging 
2017;10:1225-36.

5.	 Zornoff LAM, Skali H, Pfeffer MA, et al. Right ventricular 
dysfunction and risk of heart failure and mortality after 
myocardial infarction. J Am Coll Cardiol 2002;39:1450-5.

6.	 Addetia K, Maffessanti F, Yamat M, et al. Three-
dimensional echocardiography-based analysis of right 
ventricular shape in pulmonary arterial hypertension. Eur 
Heart J Cardiovasc Imaging 2016;17:564-75.

7.	 Dandel M, Hetzer R. Evaluation of the right ventricle by 
echocardiography: particularities and major challenges. 
Expert Rev Cardiovasc Ther 2018;16:259-75.

8.	 Sade LE, Gulmez O, Ozyer U, et al. Tissue Doppler study 
of the right ventricle with a multisegmental approach: 
comparison with cardiac Magn Reson Imaging. J Am Soc 
Echocardiogr 2009;22:361-8.

9.	 Lang RM, Badano LP, Mor-Avi V, et al. Recommendations 
for cardiac chamber quantification by echocardiography 
in adults: an update from the American Society of 
Echocardiography and the European Association 
of Cardiovascular Imaging. J Am Soc Echocardiogr 
2015;28:1-39.e14.

10.	 Rajesh GN, Raju D, Nandan D, et al. Echocardiographic 
assessment of right ventricular function in inferior wall 
myocardial infarction and angiographic correlation to 
proximal right coronary artery stenosis. Indian Heart J 
2013;65:522-8.

11.	 Saxena N, Rajagopalan N, Edelman K, et al. Tricuspid 
annular systolic velocity: a useful measurement in 
determining right ventricular systolic function regardless 
of pulmonary artery pressures. Echocardiography 
2006;23:750-5.

12.	 Anavekar NS, Gerson D, Skali H, et al. Two-
dimensional assessment of right ventricular function: 
an echocardiographic-MRI correlative study. 
Echocardiography 2007;24:452-6.

13.	 Alonso P, Andres A, Miro V, et al. Diagnostic power 
of echocardiographic speckle tracking of the tricuspid 
annular motion to assess right ventricular dysfunction. Int 
J Cardiol 2014;172:e218-9.

14.	 Simsek E, Nalbantgil S, Ceylan N, et al. Assessment of 
right ventricular systolic function in heart transplant 
patients: Correlation between echocardiography and 
cardiac Magn Reson Imaging. Investigation of the accuracy 
and reliability of echocardiography. Echocardiography 
2017;34:1432-8.

15.	 Vitarelli A, Conde Y, Cimino E, et al. Assessment of right 
ventricular function by strain rate imaging in chronic 

obstructive pulmonary disease. Eur Respir J 2006;27:268-
75.

16.	 Rudski LG, Lai WW, Afilalo J, et al. Guidelines for 
the echocardiographic assessment of the right heart 
in adults: a report from the American Society of 
Echocardiography endorsed by the European Association 
of Echocardiography, a registered branch of the European 
Society of Cardiology, and the Canadian Society of 
Echocardiography. J Am Soc Echocardiogr 2010;23:685-
713; quiz 86-8.

17.	 Kurtz C. The practice of clinical echocardiography: Right 
ventricular anatomy, function, and echocardiographic 
evaluation. 4th edition. Philadelphia, PA: Elsevier 
Saunders, 2012.

18.	 Dragulescu A, Grosse-Wortmann L, Fackoury C, et 
al. Echocardiographic assessment of right ventricular 
volumes: a comparison of different techniques in children 
after surgical repair of tetralogy of Fallot. Eur Heart J 
Cardiovasc Imaging 2012;13:596-604. 

19.	 van Ginneken B. Fifty years of computer analysis in chest 
imaging: rule-based, machine learning, deep learning. 
Radiol Phys Technol 2017;10:23-32.

20.	 Wang S, Summers RM. Machine learning and radiology. 
Med Image Anal 2012;16:933-51.

21.	 Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-
dimensional echocardiographic quantification of the left-
heart chambers using an automated adaptive analytics 
algorithm: multicentre validation study. Eur Heart J 
Cardiovasc Imaging 2018;19:47-58.

22.	 Medvedofsky D, Mor-Avi V, Byku I, et al. Three-
Dimensional Echocardiographic Automated Quantification 
of Left Heart Chamber Volumes Using an Adaptive 
Analytics Algorithm: Feasibility and Impact of Image 
Quality in Nonselected Patients. J Am Soc Echocardiogr 
2017;30:879-85.

23.	 Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 
3D Echocardiographic Left Heart Chamber Quantification 
Using an Automated Adaptive Analytics Algorithm. JACC 
Cardiovasc Imaging 2016;9:769-82.

24.	 Narang A, Mor-Avi V, Prado A, et al. Machine learning 
based automated dynamic quantification of left heart 
chamber volumes. Eur Heart J Cardiovasc Imaging 
2019;20:541-9.

25.	 Maffessanti F, Lang RM, Niel J, et al. Three-dimensional 
analysis of regional left ventricular endocardial curvature 
from cardiac magnetic resonance images. Magn Reson 
Imaging 2011;29:516-24.

26.	 Petersen SE, Aung N, Sanghvi MM, et al. Reference 



868 Ahmad et al. Machine learning to detect low RV function from 2D-ECHO

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):859-868 | http://dx.doi.org/10.21037/cdt-20-471

ranges for cardiac structure and function using 
cardiovascular magnetic resonance (CMR) in Caucasians 
from the UK Biobank population cohort. J Cardiovasc 
Magn Reson 2017;19:18.

27.	 Kursa MB, Rudnicki WR. Feature Selection with the 
Boruta Package. J Stat Softw 2010;36:13.

28.	 Chia EM, Hsieh CH, Boyd A, et al. Effects of age and 
gender on right ventricular systolic and diastolic function 
using two-dimensional speckle-tracking strain. J Am Soc 
Echocardiogr 2014;27:1079-86.e1.

29.	 Barakat AF, Sperry BW, Starling RC, et al. Prognostic 
Utility of Right Ventricular Free Wall Strain in Low Risk 
Patients After Orthotopic Heart Transplantation. Am J 
Cardiol 2017;119:1890-6.

30.	 Hamada-Harimura Y, Seo Y, Ishizu T, et al. Incremental 
Prognostic Value of Right Ventricular Strain in Patients 
With Acute Decompensated Heart Failure. Circ 
Cardiovasc Imaging 2018;11:e007249.

31.	 Hulshof HG, Eijsvogels TMH, Kleinnibbelink G, et al. 
Prognostic value of right ventricular longitudinal strain 
in patients with pulmonary hypertension: a systematic 
review and meta-analysis. Eur Heart J Cardiovasc Imaging 
2019;20:475-84.

32.	 Walsh JL, AlJaroudi WA, Lamaa N, et al. A speckle-
tracking strain-based artificial neural network model to 
differentiate cardiomyopathy type. Scand Cardiovasc J 
2020;54:92-9.

33.	 Genovese D, Rashedi N, Weinert L, et al. Machine 
Learning-Based Three-Dimensional Echocardiographic 
Quantification of Right Ventricular Size and Function: 
Validation Against Cardiac Magnetic Resonance. J Am Soc 
Echocardiogr 2019;32:969-77.

34.	 Nillesen MM, van Dijk AP, Duijnhouwer AL, et al. 
Automated Assessment of Right Ventricular Volumes and 

Function Using Three-Dimensional Transesophageal 
Echocardiography. Ultrasound Med Biol 2016;42:596-606.

35.	 Muraru D, Spadotto V, Cecchetto A, et al. New speckle-
tracking algorithm for right ventricular volume analysis 
from three-dimensional echocardiographic data sets: 
validation with cardiac magnetic resonance and comparison 
with the previous analysis tool. Eur Heart J Cardiovasc 
Imaging 2016;17:1279-89.

36.	 Hamilton-Craig CR, Stedman K, Maxwell R, et al. 
Accuracy of quantitative echocardiographic measures of 
right ventricular function as compared to cardiovascular 
magnetic resonance. Int J Cardiol Heart Vasc 
2016;12:38-44.

37.	 Knight DS, Grasso AE, Quail MA, et al. Accuracy and 
reproducibility of right ventricular quantification in 
patients with pressure and volume overload using single-
beat three-dimensional echocardiography. J Am Soc 
Echocardiogr 2015;28:363-74.

38.	 Medvedofsky D, Mor-Avi V, Kruse E, et al. Quantification 
of Right Ventricular Size and Function from Contrast-
Enhanced Three-Dimensional Echocardiographic Images. 
J Am Soc Echocardiogr 2017;30:1193-202.

39.	 Park JB, Lee SP, Lee JH, et al. Quantification of Right 
Ventricular Volume and Function Using Single-Beat 
Three-Dimensional Echocardiography: A Validation Study 
with Cardiac Magnetic Resonance. J Am Soc Echocardiogr 
2016;29:392-401.

40.	 Lopez-Candales A. Applicability of automated functional 
imaging for assessing right ventricular function. 
Echocardiography 2013;30:919-28.

41.	 Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening 
for cardiac contractile dysfunction using an artificial 
intelligence-enabled electrocardiogram. Nat Med 
2019;25:70-4.

Cite this article as: Ahmad A, Ibrahim Z, Sakr G, El-Bizri A, 
Masri L, Elhajj IH, El-Hachem N, Isma’eel H. A comparison 
of artificial intelligence-based algorithms for the identification 
of patients with depressed right ventricular function from 
2-dimentional echocardiography parameters and clinical 
features. Cardiovasc Diagn Ther 2020;10(4):859-868. doi: 
10.21037/cdt-20-471


