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Introduction

Coronary angiography reveals coronary arteries as a planar 
silhouette of their contrast filled lumens. However, it does 
not provide information regarding the coronary arterial 

wall, the site of coronary atherosclerosis. The assessment 

of coronary stenosis using coronary angiography is by 

measuring luminal constriction in relation to the adjacent 

“normal segment” as reference, resulting in the estimation 
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of the stenosis expressed as percent diameter stenosis. This 
way of assessing coronary stenosis does not convey the true 
extent of coronary atherosclerosis and is associated with 
significant inter-observer variability (1,2).

Intracoronary imaging techniques such as intravascular 
ultrasound (IVUS) and optical coherence tomography 
(OCT) on the other hand, also image the arterial wall where 
the process of atherosclerosis actually occurs. Although 
these techniques provide valuable information during 
coronary imaging, they are used in only a small proportion 
of interventional cardiology procedures. The 2018 Society 
for Cardiovascular Angiography and Intervention Focused 
Update recommends the selective use of both IVUS and 
OCT especially in percutaneous coronary intervention 
(PCI) of complex coronary lesion subsets (3).

IVUS—basic principles

IVUS is a catheter-based imaging modality that provides 
high-resolution cross-sectional images of the coronary 
artery, enabling tomographic measurements of both the 
luminal and vessel areas. The sound waves thus generated 
by the transducers, travel through the different tissues 
components and are reflected according to the acoustic 
properties of the tissue (4). The axial resolution ranges 
between 100 to 200 µm and the lateral resolution is 
approximately 250 µm (5). There is also a newer iteration 
of IVUS called High Definition IVUS (HDi), which 
represents reinvention of the IVUS technology. It provides 

superior image quality because of proprietary technology 
of 60 MHz transducer and state of the art image processing 
delivering axial resolution of 40 µm, minimised noise and 
greater depth of penetration. 

IVUS provides an accurate way of assessing coronary 
atherosclerosis because of the excellent imaging quality and 
spatial resolution (6). In Figure 1, a typical image of tri-
laminar architecture of coronary artery obtained by IVUS 
is shown. Based on the ultrasound signal that is reflected 
from the coronary artery wall and its constituents, accurate 
representations of normal, fibrotic, calcific and vulnerable 
plaques (plaques with necrotic core) are reconfigured by the 
IVUS processing system. Tomographic and morphometric 
assessment of coronary vasculature and atherosclerosis 
thus obtained, has over the years, paved the way for 
consolidation of many of our fundamental understanding 
of coronary atherosclerosis, coronary intervention with 
balloon angioplasty and coronary stenting, in-stent 
restenosis (angiographic stenosis >50% within the stent) 
and more recently, stent thrombosis. 

IVUS also affords insights into the different types of 
plaque morphology, which is very useful in the planning 
of percutaneous coronary intervention procedure for 
instance, the necessity for the use of plaque modification 
device like rotational atherectomy in coronary lesions 
with calcified plaque (7). Based on the visual appearance of 
the atherosclerotic plaque, it is classified into soft plaque 
(echogenicity less than that of the adventitia), fibrotic 
plaque (echogenicity equivalent to that of the adventitia), 
calcified plaque (lesion echogenicity greater than that of the 
adventitia) and mixed plaque (containing elements of soft, 
fibrotic and calcified plaque) (Figure 2). 

IVUS can also be used to identify vulnerable plaque—
defined as eccentric plaque with a large lipid core, which 
may be prone to rupture (8-10). This concept has been 
confirmed by the adjunct use of angioscopy together with 
IVUS which showed that lipid rich plaque are indeed more 
prone to rupture (9). Additionally, information about the 
burden of atherosclerosis—plaque burden and plaque 
volume, area stenosis and lumen area which are measures of 
the compromise of coronary artery lumen can be accurately 
obtained using IVUS. The definition and derivation of 
commonly used morphometric IVUS measurements are 
shown in Table S1. Such in vivo lesion-specific information 
provides vital information in regards to managing coronary 
lesions appropriately—identifying lesions that can be 
treated with optimal medical therapy and lesions that can 
be treated by PCI (11). For instance, in the assessment 

Intima

Plaque

Media

Adventitia

Figure 1 Typical intravascular ultrasound image depicting the 
trilaminar architecture of the coronary vasculature comprising 
intima, media and adventitia. 
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of intermediate left main stem (LMS) coronary lesions 
(50–70% severity) (12), patients with LMS minimum lumen 
area of >6 mm² can have PCI safely deferred (6).

When used to guide PCI, IVUS accurately determines 
reference lumen dimensions and lesion length for 
appropriate sizing of stents. Other salutary insights that 
IVUS provides are information regarding predictors 
of adverse events following implantation of bare metal 
stents—smaller minimal stent area, stent under expansion, 
persistent edge dissections, incomplete stent apposition 
and incomplete lesion coverage (13). Historically, in stent 
restenosis in bare metal stent (>50% luminal narrowing at 
follow up angiography) was a significant problem. IVUS 
helped to elucidate one of the main reason for this—
smaller minimal stent area (14,15). Other predictors of in 
stent restenosis in bare metal stents are smaller reference 

lumen diameter, longer stent length and smaller final lumen 
minimal lumen diameter (14). In the era of contemporary 
PCI using drug-eluting stents (DES), IVUS guidance was 
shown to reduce the rate of adverse outcomes by enabling 
physicians to achieve optimal stent result thus reducing in 
stent restenosis and stent thrombosis (16,17). A propensity 
matched study comparing IVUS guidance and angiography 
guidance showed that IVUS guidance in the context of 
DES use was an independent predictor of freedom from 
cumulative stent thrombosis at 12 months (18). In a meta-
analysis of eight randomised control trials of IVUS versus 
angiographic guided DES implantation, IVUS guidance was 
associated with reduction of major adverse cardiac events 
(MACE) by 41%, mortality by 54%, stent thrombosis by 
51% and ischemia driven target lesion revascularization 
by 40% (19). In the epicardial coronary vessels, an optimal 

A B

C

Figure 2 Different plaque morphologies. (A) Soft plaque with fibro fatty component and lipid core (yellow arrow). (B) Fibrofatty plaque 
(yellow arrow). (C) Calcified plaque (yellow arrow).
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stent result by IVUS criteria is defined as complete 
apposition of stent struts to the intima, adequate stent 
expansion defined as minimum stent area of >5.0 mm² or 
90% of distal reference lumen area and avoiding stent edge 
dissections (6,20). 

Understandably, there is a growing chorus of call for a 
more liberal use of IVUS guidance in PCI, especially in 
complex coronary lesions (21), defined as lesions located 
in the left main stem, ostial and bifurcation segments as 
well as lesions that are calcified, thrombus containing and 
chronic total occlusion (CTO) (22) where the benefits may 
be more pronounced (23,24). However, this enthusiasm has 
to be counterbalanced with concerns that this benefit may 
be offset by increased cost of using IVUS in the cardiac 
catheterization laboratories (25). Reassuringly, the use of 
IVUS especially in PCI of complex coronary lesions has 
been shown to be cost effective by virtue of the reduction 
in MACE, especially the need for repeat revascularization 
(22,26,27). For these reasons, IVUS has retained an ongoing 
and useful role in interventional cardiology for more than 
25 years. 

IVUS compared to other intracoronary imaging 
modalities

The contemporary usefulness of IVUS in complex coronary 
lesions may be better appreciated when it is compared to 
other intra coronary imaging tools like coronary angioscopy, 
near infrared spectroscopy-IVUS (NIRS-IVUS), virtual 
histology-IVUS (VH-IVUS) and OCT. The characteristics 
and differences of these intra-coronary imaging modalities 
are seen in Table 1.

Coronary angioscopy is a technique that employs direct 
visualisation of the coronary atherosclerotic plaque using 
an intra-coronary fiberscope. This offers excellent and 
direct view of coronary plaque and allows interrogation of 

the plaque for vulnerability, one of the key achievements of 
this intra coronary imaging modality (28). The other major 
use for coronary angioscopy is in the assessment of the 
completeness of drug eluting stent endothelialisation. This 
information is vital because inadequate endothelialisation of 
drug eluting stent may be associated with an increased risk 
for late stent thrombosis (29,30). 

NIRS-IVUS is a hybrid catheter system that yields 
both NIRS and high definition IVUS images, thus giving 
us vital insights into high-risk plaques and patients at 
elevated risk for future coronary events (31). The current 
NIRS system, using wavelength of 800–2,500 nm, converts 
reflected signals to a spectrum that is then used to produce 
a computer-derived algorithm with lipid plaque represented 
on the yellow display range. This is useful in evaluating 
coronary atherosclerosis especially vulnerable plaque, the 
visualisation of which forms one of the limitations of IVUS. 
NIRS provides real time information about the lipid content 
of coronary plaques with 90% sensitivity and 93% specificity 
and has been validated in post mortem specimens (32).  
Combined with vascular structural information provided by 
IVUS, the NIRS-IVUS system holds significant promise in 
the identification of high risk lipid core lesions (33) and for 
the optimal stent coverage of such lesions. 

In the last decade, spectral analysis of the radiofrequency 
backscatter signals known as VH–IVUS, has given us 
information about the plaque morphology-fibrous, fibro-
fatty, dense calcium and necrotic core (34). VH-IVUS has 
been used to show an association between vulnerable plaque 
(large lipid core and thin cap fibro-atheroma) and adverse 
long-term events in patients with non-culprit plaque (35). 

Frequency domain OCT (FD-OCT) on the other hand 
uses light waves instead of sound waves. OCT provides 
high-resolution intra-coronary images based on near-
infrared interferometry. Near infra red light is emitted at 
approximately 1,300 nm wavelength and images are then 

Table 1 Technical characteristics and differences of intra-coronary imaging modalities

Characteristics Grey-scale IVUS FD-OCT VH-IVUS NIRS

Frequency (MHz) 20–45 N/A 20–45 N/A

Axial resolution (um) 100–200 15–20 200 N/A

Tissue penetration (mm) >5 1–2.5 >5 1–2

Pullback speed (mm/sec) 0.5–1 20–40 0.5–1 0.5

Frame rate (frames/sec) 10–30 100–160 10–30 N/A

Image through blood Yes No Yes Yes



1375Cardiovascular Diagnosis and Therapy, Vol 10, No 5 October 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(5):1371-1388 | http://dx.doi.org/10.21037/cdt-20-189

configured by detection of backscattered light. FD-OCT 
requires clearance of blood prior to imaging (because red 
blood cells scatter infra red light) and offers superior axial 
and lateral resolution of 15 and 20–40 µm respectively. 
Consequently, the enhanced spatial resolution of FD-OCT 
provides a much better visualization and appreciation of 
intracoronary pathological features that cannot be matched 
by IVUS (36) (Figure 3). There are several limitations 
associated with FD-OCT. Firstly, in patients with aorto-
ostial lesions, because of the difficulty in intubating the 
coronary artery with a guide catheter, optimal blood 
clearance is not easily achieved resulting in poor image 
quality. Secondly, the penetration depth of FD-OCT is 
restricted to 1–3 mm, thus larger, aneurysmal and positive 
remodelled coronary arteries cannot be assessed accurately. 
Thirdly, as radio opaque iodinated contrast is the medium 
that is used to clear the coronary artery prior to imaging, 
the reality of increased use of contrast and the subsequent 
risk of contrast induced kidney injury remains a possibility 
particularly in those with chronic kidney disease. 

IVUS when compared to coronary angioscopy, NIRS-
IVUS, VH-IVUS and OCT, provides insights not only in 
the understanding of coronary atherosclerosis but also in 
the optimal way it can be treated with PCI. In this review, 
we will specifically look at the usefulness of IVUS in PCI of 
complex coronary lesions.

IVUS in PCI of left main stem lesions

Traditionally, left main stem (LMS) PCI has been one of 
the most challenging frontiers in interventional cardiology 
because angiographic assessment of intermediate coronary 

lesions in left main stem may be fraught with inconsistencies 
wi th  regards  to  les ion sever i ty  assessment  (37) .  
In  the  Coronary  Artery  Surgery  Study  (CASS) , 
interpretation of LMS findings in coronary angiography 
was the least reproducible (38) and assessment of LMS 
lesion severity was noted to be associated with significant 
inter observer variability (39). These inconsistencies may 
also be due to the fact that coronary angiography frequently 
underestimates the true severity of coronary lesions (40) 
because: (I) diffuse disease of LMS renders assessment 
of diameter stenosis by coronary angiography difficult 
due to the lack of a reference segment, (II) a short LMS 
also leads to poor visualisation of a reference segment 
leading to an over or under estimation of the LMS calibre, 
(III) ostial LMS lesions preclude intubation and optimal 
opacification of the LMS due to contrast streaming, thus 
limiting accurate assessment of its dimensions and (IV) 
the presence of overlapping daughter vessels may prevent 
satisfactory visualization of the distal LMS and ostial LAD/
LCx (41). It is also noteworthy that a high percentage of 
patients with angiographically normal LMS may indeed 
have angiographically silent disease—atherosclerotic disease 
detected by IVUS but not by coronary angiography; and 
even when there is angiographically detectable disease, 
correlation between IVUS and angiography is poor in terms 
of stenosis severity assessment (42). IVUS thus provides 
insights into true morphologic severity of LMS lesions 
that may aid in choosing the best management option in 
these patients (43) and when PCI is the chosen treatment 
option, IVUS helps the treating physician to strategize 
appropriately by choosing the right devices in order to 
achieve optimal PCI result (44) (Figure 4).

Although, coronary artery bypass surgery has traditionally 
been the preferred option of revascularization, there is 
growing body of supporting evidence for the safety and 
efficacy of PCI in LMS both acutely as well as in the mid 
to long term (45-48). The use of IVUS for PCI with DES 
in LMS lesions is also known to be associated with better 
overall clinical outcome. Conversely, the non-use of IVUS 
in LMS PCI has been identified as an independent predictor 
of major adverse events including cardiac death, myocardial 
infarction (MI), need for target lesion revascularization 
(TLR) and stent thrombosis (ST) (49,50), leading many 
in the field to consider IVUS almost mandatory when 
performing PCI to the left main stem. In a large Korean 
(MAIN COMPARE) registry that studied the benefit of 
routine of IVUS guidance in LMS PCI (49), Park et al. 
compared the three-year outcome of 2 propensity-matched 

Figure 3 Typical OCT image. I: intima, P: plaque, M: media and A: 
adventitia.

A
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cohorts of IVUS versus angiography guided LMS PCI. In 
145 matched pairs of patients who received drug-eluting 
stents, the three-year incidence of mortality was lower in 
the IVUS guidance group (4.7% versus 16%, log-rank 
P=0.05; hazard ratio, 0.39; 95% CI: 0.15 to 1.02; Cox model 
P=0.055). When the outcome was adjusted using propensity 
score, the risk of adverse outcome at three years were 
reduced by 60% in the IVUS guided LMS PCI group (49).  
Such a benefit may be explained by the fact that the use 
of IVUS leads to better stent expansion and consequently 
improved stent apposition.

In the landmark EXCEL trial, where patients with 
significant LMS coronary artery stenosis (angiographic 
stenosis ≥70% or ≥50% to <70% with non invasive evidence 
of left main ischemia/IVUS MLA ≤6 mm²/fractional flow 
reserve ≤0.8) with low to intermediate SYNTAX score 
were randomised to either coronary artery bypass surgery 
or PCI with second generation Everolimus eluting stent, 
PCI was considered non-inferior to CABG with respect to 
the composite of death, stroke or myocardial infarction at  
3 years. It’s noteworthy that 77% of patients who underwent 
PCI in the EXCEL trial had IVUS guidance.

The utility of IVUS in LMS PCI can also be better 
appreciated by looking at the segments within the left 
main stem where PCI may be associated with increased 
adverse outcomes. Of the 3 LMS segments (ostial, 
body and distal), PCI of the distal segment lesions is 
associated with worse outcomes (51). This is due to 
the composition and distribution of the atherosclerotic 
plaque in this segment, which are usually more diffuse 
and mixed (with significant fibro calcific composition). 
This can result in suboptimal stenting result and 
potentially increase the rate of adverse cardiac events. 
The benefit of using IVUS especially in the distal LMS 
was seen in the IVUS-TRONCO-ICP study, which was 
a pooled analysis of 4 large Spanish PCI registries (50).  
IVUS guidance in distal LMS PCI was associated with 
improved survival free from major adverse cardiac events 
(death, MI and TLR). The use of IVUS emerged as 
an independent predictor for fewer adverse events in 
the overall population and especially in the subgroup 
of patients with distal LMS disease, even when 2 stents 
were used. It therefore makes biological sense to use 
IVUS in distal LMS PCI where there is a greater 
necessity to obtain the best possible stent result, simply 
because of the amount of myocardium subtended. The 
assessment of distal LMS using IVUS is preferably 
done with pullback from both LAD and LCx because 
this  provides excel lent  morphologic information 
about the LMS atherosclerotic disease process (52)  
and its extent into LAD and LCx. This has significant impact 
on the decision-making during the PCI procedure—in 
adopting a single versus two stent strategy (MLA at the LCx  
ostium >4.0 mm² and a plaque burden <50% is rarely 
associated with an Fractional Flow Reserve (FFR) <0.8 
after single stent crossover) (53). IVUS also provides 
critical information in PCI of ostial LMS lesions because 
optimal ostial stent coverage can be confirmed and further 
optimization of stent expansion may be undertaken where 
necessary (Figure 5). 

The criteria used to determine optimal stent result 
in the LMS are—optimal stent apposition, expansion 
and minimum stent area that predicts angiographic 
restenosis—5.0 mm² for the LCx ostium, 6.3 mm² for the 
LAD ostium, 7.2 mm² for the polygon of confluence and 
8.2 mm² for the proximal LMS (54,55). It is not surprising 
that the Society of Cardiovascular Angiography and 
Interventions position statement in 2018 considered IVUS 
as an important procedural adjunct both in pre and post 
procedural evaluation in LMS PCI (56). 

A

B

LAD

LAD

LCx

LCx

LMS

LMS

Figure 4 IVUS guided left main stem PCI. (A) Left main stem: 
pre PCI—significant stenosis (minimum luminal area 5.68 mm²). 
(B) Left main stem: post PCI—optimal stent result (minimum 
stent area 11.65 mm²).
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IVUS in PCI of ostial coronary artery lesions

PCI of coronary ostial lesions is technically challenging 
and may be associated with higher rates of adverse cardiac 
events compared with PCI of non-ostial coronary lesions 
(57,58). This is most likely due to the type of plaque found 
at these sites (fibrotic, calcific or fibro-calcific) that results 
in suboptimal stenting result consequent to inadequate 
stent expansion (59). Additionally, PCI of ostial lesions may 
be associated with geographical miss defined as inadvertent 
stent deployment that misses the desired target area (60), 

which in this case is the ostium. This is attributed to the 
inability to obtain co-axial alignment of the guide catheter 
prior to stent deployment, with the resultant movement 
of the stent from the desired anatomical location due to 
“melon-seeding.” This can result in higher rates of restenosis 
and target lesion revascularization (60,61). Inadvertent 
movement of the stent proximally, resulting in protrusion 
into the aorta, may impede intubation of the coronary 
artery during subsequent coronary angiography whereas 
melon seeding of the stent distally requires additional 
stenting to cover the ostium due to geographical miss. 

A B

C D

Figure 5 Ostial LMS lesion in a 70 years old man with angina CCS 2 and strongly positive stress echo for multi-vessel ischemia. (A) Coronary 
angiogram: dampening of pressure upon engagement of LMS with 50% ostial LMS stenosis (yellow arrow), which persisted with intracoronary 
Glyceryl Trinitrate. RCA, chronically occluded at the proximal segment. SYNTAX score =18. (B) IVUS of LMS: significant and eccentric fibrotic 
plaque (media indicated by yellow arrow and plaque indicated by white arrow). LMS MLA 5.9 mm². Cross section at the ostium of LMS indicated 
by orange arrow. (C) After stenting of LMS ostium (yellow arrow). (D) IVUS pullback following stenting of LMS ostium. Minimum stent area 9.2 
mm² with optimal ostial LMS stent coverage. Cross section at the ostium of LMS indicated by orange arrow.
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The incidence of geographical miss can be as high as 10%, 
when IVUS is used after stenting to assess stent result (62).  
Coronary ostial lesions are located at either the aorto-ostial 
or at the major coronary ostial segments (e.g., LAD/LCx).

Aorto-ostial lesions

Aorto-ostial compared to LAD/LCx ostial lesions poses 
greater challenge because aorto-ostial lesions are more 
resistant to expansion. This is due to increased elastic tissue 
and muscular content (59). This may result in stent under-
expansion, one of the predictors of stent thrombosis (63). 
It is interesting that ostial right coronary artery (RCA) 
lesions are associated with greater restenosis compared 
to ostial left main stem lesions (62) though the reason for 
this observation is unclear. The use of IVUS to guide PCI 
of aorto-ostial lesions has the potential to help operators 
to prepare the lesion well before stenting, choose stent of 

appropriate dimension and ensure optimal ostial coverage 
and stent result. 

When compared with OCT, IVUS is more advantageous 
in the aorto-ostial coronary lesions because of the fact 
that such lesions would prevent optimal coronary guide 
catheter intubation, an important prerequisite for OCT 
where blood clearance with contrast is mandatory for 
optimal visualization of vascular structures. In addition, the 
presence of diffuse atherosclerosis involving the entire LMS 
precludes optimal visualization of the LMS ostium. In such 
situations, IVUS is the better modality as the guide catheter 
may be withdrawn from the LMS in order to visualise the 
entire length of the LMS (64). 

LAD/LCx ostial lesions

In LAD/LCx ostial coronary lesions, IVUS reveals diffuse 
distribution of plaque, extending from the proximal LAD/
LCx and into the LMS (65). Thus, the use of IVUS may 
help in choosing longer stents to ensure optimal plaque 
coverage especially in the distal LMS if the distal LMS 
plaque burden is ≥50% (66). Further optimization of the 
stent result in the distal LMS can be achieved confidently 
using IVUS. When IVUS is used to guide PCI in LAD/LCx 
ostial coronary lesions, there is a significant reduction in 
long term adverse cardiac outcomes (62). The use of IVUS 
in these lesions helps physicians to strategize appropriately 
by choosing devices like rotational atherectomy or cutting 
balloon to remodel the plaque so as to enable delivery 
of stent and achieving optimal stent expansion and 
apposition eventually. IVUS thus aids in the selection of 
stent that is of appropriate length and diameter, suited to 
the true dimension of the coronary artery and extent of 
atherosclerotic plaque (Figure 6). Finally, IVUS also helps 
in identifying suboptimal stent expansion that can then be 
dealt with acutely by more aggressive post dilatation (23).

In summary, in PCI of both aorto-ostial and LAD/LCx 
ostial coronary lesions, IVUS has a significant role to play 
and its use results in optimal acute results and reduced 
adverse events in the long term (67).

IVUS in PCI of coronary bifurcation lesions

Coronary bifurcation lesion PCI remains a uniquely 
challenging anatomic subset associated with increased need 
for repeat revascularization. This is because of various 
factors including variability in plaque burden, plaque 
morphology, angle of bifurcation and vessel diameter that 

Figure 6 IVUS Guided Ostial LAD PCI. (A) Pre PCI IVUS 
pullback across LAD ostium (fibro-calcific plaque with minimum 
luminal area 2.73 mm²). Cross section at the ostium indicated by 
orange arrow. (B) Post PCI IVUS pullback reveals optimal stent 
expansion (minimum stent area 9.05 mm²). Cross section at the 
ostium indicated by orange arrow.
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makes optimal result elusive especially in true bifurcation 
lesions (68). The use of drug eluting stents for coronary 
bifurcation lesions has however reduced the need for 
repeat revascularization (68). The variability in decision 
making in regards to salvaging side branch has also been 
largely resolved by adopting a single stent procedure as 
a default strategy (69-71). IVUS helps in this regard by 
firstly providing pre intervention information that helps 
in the decision-making whether the side branch requires 
salvage. A pre-intervention MLA of ≥2.4 mm² in the side 
branch could predict non ischemic post intervention FFR 
≥0.8 (predictive value 98%), thus helping operators to avoid 
side branch PCI. If the pre-intervention side branch MLA  
≤2.4 mm², then clinical judgment have to employed to 
determine if the side branch required salvaging as a post 
intervention FFR ≥0.8 could not be accurately determined 
(predictive value 40%) (6).

Given the anatomic complexity of coronary bifurcation 
lesions, the variability of plaque morphology and the flow 
dynamics, it makes sense that IVUS should be used to firstly 
strategize the PCI procedure appropriately and secondly to 
achieve optimal stent result especially in light of the ever-
present spectre of stent thrombosis, albeit at a reduced rate 
in the era of newer generation DES (17,72-74). Though the 
use of IVUS is not recommended in all coronary bifurcation 
PCI, there are certain bifurcation subsets in the epicardial 
coronary vessels where IVUS may be useful. These are 
proximal LAD/diagonal and thrombotic bifurcation 
lesions, especially in acute coronary syndrome. IVUS in the 
proximal LAD/Diagonal affords vital information regarding 
the diffuse nature of atherosclerotic plaque across the 
Diagonal branch which may impact the success of the PCI 
procedure because of the risk of plaque shifting into the side 
branch following stent implantation in the main vessel (75).  
In thrombotic bifurcation lesion where the use of DES 
has been noted to be associated with a higher risk for late 
stent thrombosis (74), the use of IVUS helps in achieving 
optimal stent result, mitigating the risk of future MACE 
and possibly even death.

IVUS in PCI of LAD/diagonal bifurcation lesion

In LAD/Diagonal bifurcation lesions, it appears a very 
reasonable strategy to use IVUS to ensure optimal stent 
result. In a large Korean bifurcation registry of 1,668 
patients, a propensity-matched cohort of 487 patients 
was compared for IVUS versus angiography guidance 
in coronary bifurcation PCI. Target lesions were in the 

LAD in 83% of patients in both groups. The incidence 
of death or myocardial infarction was significantly lower 
in the IVUS-guided group compared to the angiography-
guided group (3.8% vs. 7.8%, log rank test P=0.03, hazard 
ratio 0.44, 95% CI: 0.12–0.96, Cox model P=0.04) (76). 
It would therefore appear that IVUS has a role to play in 
optimization of stent result in this challenging anatomic 
subset. It is imperative to aim for a final minimum stent area 
of at least 5 mm² in both the main vessel and side branch to 
mitigate the risk of MACE (Figure 7).

IVUS in PCI of thrombotic bifurcation lesions

One of the disadvantages of IVUS is that it is not an 
ideal intra coronary imaging modality for visualisation of 
thrombus because there are no pathognomonic features 
for the accurate diagnosis of thrombus. In lesions with 
large atherothrombotic burden, the final stent result may 
be suboptimal because of the difficulty in assessing true 
coronary artery dimensions predisposing to early stent 
thrombosis (77). These lessons may be even more important 
in coronary bifurcation lesions where 2 stents have to be 
deployed i.e., bifurcation lesions where both the main vessel 
and the ostium of a sizeable branch vessel (>2.5 mm in 
diameter) have severe thrombus containing lesions. Despite 
its limitation, IVUS can still aid in the determination of true 
vessel dimension as well as the burden of atherothrombotic 
d i s e a s e ,  t h u s  e n a b l i n g  t h e  o p e r a t o r  t o  c h o o s e 
appropriately sized stents and anticipate slow flow (78).  
In stent thrombosis involving bifurcation lesions, IVUS 
offers insights that help to elucidate the causes for the 
stent failure—neo-intimal hyperplasia, neo atherosclerosis, 
under sized stents, under expansion of stent, mal-apposition 
of stent struts (lack of contact of stent struts with intimal 
surface) and stent edge restenosis (79).

In coronary bifurcation PCI, especially involving 
proximal LAD/diagonal branch and thrombotic lesions, 
IVUS has a vital role in helping to achieve excellent acute 
procedural result and mitigation of MACE events in the 
long term.

IVUS in PCI of chronic total occlusions

Chronic total occlusion (CTO) of coronary arteries is 
encountered in about 10–15% of cases (80). There is 
compelling evidence to show that successful recanalization 
of CTO’s is associated with significant reduction in angina 
and corresponding improvement in quality of life (12,48). 
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Figure 7 IVUS guided bifurcation PCI using 2 stents in a 57 years old man with angina CCS 3 and strongly positive exercise stress test. (A) 
Pre PCI coronary angiogram. Sub-totally occluded moderate caliber diagonal branch (yellow arrow) at the ostium and mild 40–50% stenosis 
of the LAD adjacent to the diagonal branch (white arrow). (B) Pre PCI IVUS run of LAD (minimum luminal area 4.2 mm²). (C) IVUS run 
of Diagonal branch following pre-dilatation (minimum luminal area 2.8 mm²). (D) Coronary angiogram after stenting of both the LAD (white 
arrow) and Diagonal branch (yellow arrow). (E) Post PCI IVUS run of LAD (optimal stent result with minimum stent area 7.97 mm²). (F) 
Post PCI IVUS run of Diagonal branch (optimal stent result with minimum stent area 5.11 mm²).
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Traditionally CTO PCI was associated with only a modest 
success rate. However, in the last decade, revascularization 
of CTO has gained significant momentum with the 
(I) advancement in dedicated CTO coronary guide-
wires and (II) the development of hybrid ante-grade and 
retrograde approach for recanalization of CTO. These have 
significantly increased the success rates in CTO PCI (81).  
Successful CTO-PCI is known to be associated with 
improvement in angina status, exercise tolerance, survival 
and reduction in major adverse cardiac events (MACE)  
(82-84). However, there are still specific anatomic subsets 
within the CTO realm that pose a significant challenge.

IVUS in antegrade CTO PCI

In ambiguous, blunt or even absent proximal cap of the 
CTO (with an adjacent side branch), the use of IVUS 
enables the operator to precisely identify the true lumen. 
In this procedure, IVUS pullback is performed from 
the side branch and during the course of the pullback, 
the true origin of the CTO may be appreciated. Having 
identified the origin of the CTO, the proximal cap of the 
CTO can then be punctured using a stiff coronary guide-
wire, using IVUS guidance in real time (85). This has the 
potential to increase the success rate of such challenging 
CTO subset significantly (86). IVUS also helps in 
confirming luminal position of the wire along the course 
of the CTO. In antegrade CTO PCI, IVUS detected the 
sub-intimal position of the wire in more than half of all 
successful CTO PCI cases (Figure 8). In the majority of 

such cases (86.7%), dissection and re-entry approach was  
adopted (87). Additionally, IVUS also gives the operator 
the true dimension of the CTO vessel, plaque distribution 
and burden thus facilitating not only the selection of 
appropriately sized stent but also in achieving optimal stent 
result (6).

IVUS in retrograde CTO PCI

In retrograde approach for CTO recanalization, the use 
of IVUS helps in understanding the location of both the 
antegrade and retrograde wires (88). IVUS is used at the 
stage of the procedure when both the ante-grade and the 
retrograde wires are in the CTO segment. After balloon 
dilatation of the CTO segment on the antegrade wire, the 
IVUS catheter is first passed onto the antegrade wire and 
IVUS images are obtained. This crucial information helps 
the operator to facilitate the passage of the retrograde wire 
from false into the true lumen primarily by determination of 
the position of the antegrade wire (48,89). In a series where 
IVUS was used to guide retrograde CTO PCI in previously 
failed CTO procedures, when CART (controlled antegrade 
and retrograde sub-intimal tracking) or reverse CART was 
performed, IVUS revealed the sub-intimal position of the 
antegrade wires more often (59.5%) whereas the retrograde 
wires were located in the intimal space (61.7%). This insight 
was critical in helping the operators to steer the retrograde 
wire into the true lumen ensuring high procedural success 
rate (90).

Other uses for IVUS in CTO PCI

A CTO length of more than 20 mm is known to be 
associated with lower procedural success rates (91). The 
passage of wires in long CTO’s are challenging especially in 
tortuous anatomy, as there is significant risk of sub intimal 
passage of the wire. IVUS assists the operator to ensure the 
luminal position of the coronary guide wire. In the event 
the first wire finds a sub intimal passage, IVUS can be used 
for parallel wire technique, where a second coronary guide 
wire may be directed into the true lumen using the first 
wire as an anatomic marker. A novel IVUS based 3D wiring 
of CTO lesions where the wire tip detection is significantly 
improved, has the promise of even greater success especially 
in this CTO subset (92).

It is clear then that IVUS plays a significant role in 
CTO recanalization, both in ante-grade and retrograde 

Figure 8 IVUS pullback of RCA CTO lesion following successful 
wire crossing using ante-grade wire escalation strategy. False lumen 
was noted with hematoma, highlighting the sub-intimal passage 
of the first coronary of guide wire, which then led to successful 
crossing with a second guide wire. 

True lumen

False 
lumen with 
hematoma
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approaches. In CTO, the lesion subsets where IVUS is most 
useful are: (I) ambiguous, blunt or absent proximal cap in 
the ante-grade approach (85), (II) for the accomplishment 
of CART or reverse CART in the retrograde approach (90)  
and (III) for the determination of luminal passage of 
coronary guide wire in long CTO’s. The use of IVUS 
to guide CTO PCI may be associated with significant 

reduction in major adverse cardiac event rate (93,94) 
including stent thrombosis (33,92,93).

IVUS in calcified coronary lesions

Coronary artery calcification (CAC) is significantly 
underestimated by coronary angiography whereas IVUS 
accurately reveals not only the presence of calcification 
but also its distribution (superficial/deep) and its severity 
(based on the arc of calcification) (95,96). CAC remains one 
of the most important predictors of adverse outcome after  
PCI (22). In the era of balloon angioplasty, presence of 
severe calcification was a predictor of significant dissection 
after balloon dilatation (97) and in the era of contemporary 
PCI using drug eluting stents, presence of calcification may 
be associated with late stent thrombosis (98).

IVUS enables accurate assessment of the burden of CAC 
and to answer the all-important question whether the calcified 
plaque requires modification using rotational atherectomy prior 
to stent implantation (Figure 9). An arc of calcium that is more 
than 180° is associated with suboptimal stent symmetry (99)  
and an arc of calcification more than 270° is associated 
with increased need for the use rotational atherectomy 
and greater likelihood of stent mal-apposition (100)  
following stent implantation, which may be associated with 
increased risk for late stent thrombosis.

IVUS guided rotational atherectomy for calcified 
coronary lesions

There is a potential role for IVUS in angiographically calcified 
coronary lesions because when calcification is angiographically 
visible and at least of moderate severity, IVUS reveals that 
the arc of calcium is likely to be large and superficial (101). 
When used in such lesions, IVUS helps to identify those 
that truly require plaque remodelling with RA i.e., lesions 
with superficial calcification with arc >180°, considered 
to be severely calcified lesions by IVUS criteria (101).  
This has the potential for improved outcomes. Importantly, 
the risk of stent thrombosis in sub optimally expanded 
stents may be mitigated. 

Rotational atherectomy (RA) is a technique that enables 
plaque modification by using the preferential ablation 
principle in fibrotic or calcified coronary lesions (102). In 
the randomised ROTAXUS trial (103), 240 patients were 
randomized either to RA PCI or standard PCI. Though 
there was increased acute luminal gain favouring the RA 

A

B

C

D

Figure 9 Pre and post rotational atherectomy of proximal LAD. (A) 
Longitudinal IVUS pullback across proximal LAD, pre rotational 
atherectomy. (B) Cross sectional (pre rotational atherectomy) 
image of severe proximal LAD stenosis with 360° arc of superficial 
calcification (yellow line). (C) Longitudinal IVUS pullback across 
proximal LAD post rotational atherectomy. (D) Cross sectional 
(post rotational atherectomy) image of proximal LAD stenosis 
(yellow line) revealing a larger lumen.
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PCI arm (1.56±0.43 vs. 1.44+0.49 mm, P=0.01), late lumen 
loss at 9 months was higher in the RA arm (0.44±0.58 vs. 
0.31±0.52, P=0.04) compared to standard PCI arm. In-
stent binary restenosis (11.4% vs. 10.6%, P=0.71), target 
lesion revascularization (11.7% vs. 12.5%, P=0.84), definite 
stent thrombosis (0.8% vs. 0%, P=1.0), and major adverse 
cardiac events (24.2% vs. 28.3%, P=0.46) were similar 
in both groups. At 9 months, there was no significant 
reduction in MACE in RA PCI arm compared to standard 
PCI. Based on this study, routine RA appears to be not as 
useful in PCI of moderate to severely calcified coronary 
lesions. Yet, in this study, despite the fact that close to 50% 
of lesion were considered severely calcified by angiographic 
criteria, IVUS use was not mandated. In the prospective, 
multicentre, observational MACE trial (84), designed 
to look at the impact of calcification on procedural and 
long term outcomes, stratified by calcification severity by 
angiographic core lab, about 95% of patients had rotational 
atherectomy for calcified lesions that were considered 
both moderate and severe. IVUS guidance for RA was not 
mandated. Both lesion and procedural success were lower in 
severely calcified lesions—83.3% versus 94.7% of none or 
mildly calcified lesions, P=0.006 and 86.8% versus 95% of 
moderately calcified lesions, P=0.03 respectively. The 1-year 
MACE (cardiac death, myocardial infarction and target 
vessel revascularization) rates were higher in the severely 
calcified lesions (24.4%) compared to moderate (8.7%) and 
none/mildly calcified lesions (4.7%) (P<0.001). The use of 
IVUS in both these studies may have helped in achieving 
greater plaque remodelling and consequently larger final 
stent dimension. This could have translated to a greater 
reduction in MACE.

In this complex lesion subset, IVUS offers valuable 
information other than just the burden of calcification. 
IVUS parameters such as reference lumen dimension, 
minimal luminal diameter, cross sectional area of the lumen 
at the stenotic site and importantly, post stent dimension 
including stent symmetry and expansion help in strategizing 
appropriately during the procedure. Reference maximum 
luminal diameter aids in choosing the correct stent size; 
mean (stenosis) luminal diameter may aid in the selection of 
the appropriate burr size and post stent IVUS information 
aids the operator in choosing appropriate balloon size for 
post dilatation in order to achieve optimal stent result. The 
use of a single burr, based on the mean luminal diameter, 
has cost saving potential. We know that moderate to 
severely calcified lesions exist in a milieu of diffuse disease. 
IVUS therefore gives salutary insight into the length of the 

lesion that needs to be stented, avoiding geographical miss. 
In moderate to severely calcified coronary lesions, 

IVUS guidance helps in adopting appropriate PCI strategy 
especially in regards to plaque modification with RA. 
Conversely, the use of IVUS also helps to identify lesions 
where the procedure may be completed using conventional 
PCI techniques, thus saving cost and avoiding small (1.3%) 
but potentially dangerous complications associated with 
procedures like RA (56). Further adequately powered study 
using IVUS, is needed to identify the subset within the 
cohort of patients with moderate to severely calcified lesions 
who may benefit from RA PCI.

Conclusions

IVUS remains a niche technology in interventional 
cardiology.  The 2018 Society for Cardiovascular 
Angiography and Intervention guideline considers IVUS 
to be definitely beneficial in achieving optimal stent result 
and probably beneficial in guiding PCI in complex lesion 
subsets (3).

IVUS has proven to be a valuable tool in cardiac 
catheterization laboratories in the era of contemporary 
PCI practice especially in complex coronary lesion subsets 
like LMS, ostial, bifurcation, CTO and calcified coronary 
lesions. In these lesion subsets, IVUS provides significant 
and salutary insights that not only has the potential to alter 
the intra procedural course favourably and reduce major 
adverse cardiac events in the long term (104) but also 
translates to cost saving because of the potential for rational 
use of devices in the catheterization laboratories and 
reducing the need for repeat revascularization procedures 
(26,27).
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Table S1 Quantitative IVUS measurements (105)

1. Lumen CSA = Area bounded by luminal border

2. Minimum luminal diameter = Shortest diameter through center point of the lumen.

3. Maximum luminal diameter = Longest diameter through center point of the lumen

4. Lumen eccentricity = Maximum luminal diameter − Minimum luminal diameter/Maximum luminal diameter 

5. Lumen area stenosis = Reference lumen CSA − Lesion lumen CSA/Reference lumen CSA

6. Plaque + Media (atheroma) cross section area = EEM CSA − lumen CSA

7. % Plaque area (atheroma /plaque burden) = Plaque + media CSA /EEM CSA

8. Stent CSA = Area bounded by coronary stent

9. Stent symmetry = Maximum stent diameter − Minimum stent diameter/Maximum stent diameter

10. Stent expansion = Min. stent CSA compared with predefined reference segment CSA
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